
Neural Language Modeling With Implicit Cache Pointers

Abstract
A cache-inspired approach is proposed for neural language
models (LMs) to improve long-range dependency and better
predict rare words from long contexts. This approach is a
simpler alternative to attention-based pointer mechanism that
enables neural LMs to reproduce words from recent history.
Without using attention and mixture structure, the method only
involves appending extra tokens that represent words in his-
tory to the output layer of a neural LM and modifying train-
ing supervisions accordingly. A memory-augmentation unit
is introduced to learn words that are particularly likely to re-
peat. We experiment with both recurrent neural network- and
Transformer-based LMs. Perplexity evaluation on Penn Tree-
bank and WikiText-2 shows the proposed model outperforms
both LSTM and LSTM with attention-based pointer mechanism
and is more effective on rare words. N -best rescoring experi-
ments on Switchboard indicate that it benefits both very rare
and frequent words. However, it is challenging for the proposed
model as well as two other models with attention-based pointer
mechanism to obtain good overall WER reductions.

Index Terms: RNNLM, Transformer, cache model, pointer
component, automatic speech recognition

1. Introduction
Neural language models (LMs) are an important module in au-
tomatic speech recognition (ASR) [1, 2, 3]. Standard recurrent
neural network language models (RNNLMs) make predictions
based on a fix-sized hidden vector, making modeling long-range
dependency challenging. Although LSTMs outperform vanilla
RNNs, it has been observed that they usually retain only a rela-
tively short span of context [4, 5]. Memory augmented mod-
els and attention mechanism have been proposed to increase
the hidden state’s capacity to retrieve information from hidden
states in the more distant past. Though improved performance
has been reported, RNNLMs with the standard softmax output
still struggle with rare or unknown words, even with attention.

Since the self-attention architecture was proposed [6], deep
Transformers have demonstrated state-of-the-art performance
on natural language processing tasks [7, 8, 9]. Transformer-
based LMs have outperformed RNNLMs on large corpora and
been used in rescoring stage in ASR systems [10, 11]. However,
their ability to capture long-term dependency, e.g. self-trigger
effects (word repetitions), remains unclear.

In real scenarios, especially in conversations, after a word
or phrase is spoken, it is highly likely to be spoken again
[12, 13]. These self-triggers or topic-word effects can be cap-
tured by cache models, which stores the unigram distribution of
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recently seen words. Cache models adapt pre-trained LMs to
local contexts (decoded hypotheses) in ASR systems and hence
can improve ASR performance [14, 15]. Usually, cache mod-
els are integrated in pre-trained models at test time. It is a
lightweight approach as no model retraining is required, while
it may not be optimal. Effectively incorporating them in train-
ing stages and enabling neural LMs to learn to adapt to recent
history remain to be explored.

In this work, we propose a cache-inspired approach for neu-
ral LMs to improve the capability of modeling long-term de-
pendency, especially for rare words. The output is extended
by a predefined size L to represent L preceding words in his-
tory. The pre-softmax activation of the L units, like the other
pre-softmax units, is computed by a linear transformation of the
hidden state or context vector, and then appended to the out-
put before the softmax layer, as shown in Figure 1. The train-
ing loss is still cross entropy. However, unlike standard train-
ing, wherein supervision comes from a vocabulary-sized one-
hot vector encoding the predicted word, the supervision vector
is now L bits longer and contains additional ones in each history
position where the word is the same as the predicted one.

The extended output and modified supervision implicitly
enable learning from where in history to copy. While it may
still be difficult for the model to learn which words are partic-
ularly likely to be self-triggers, i.e. when to copy. To provide
a mechanism for this, one additional unit is introduced in the
pre-softmax layer (but not included in the softmax computa-
tion) to capture the probability that the current word may be a
self-trigger. At each word position, activations from these ad-
ditional units in the L previous positions are added to the L
extended output units.

Though cache-inspired neural LMs for improving long-
range dependency have been proposed and demonstrated su-
perior performance than LSTMs in terms of perplexity, to our
best knowledge, their effect on ASR accuracy remains to be ex-
plored. In this study, we evaluate neural LMs on ASR tasks. We
also apply the proposed approach to Transformer architecture to
verify if cache-based information is still beneficial.

2. Related Work
In this section, we briefly introduce related work about ap-
proaches to improve performance on rare words and long-term
dependency for sequence modeling problems including neural
language modeling and machine translation [16, 17, 18, 19, 20,
21]. Vinyals et al. [16] introduces an attention-based pointer
network to select items from the input as output. It has been
shown to help on geometric problems [16]. The pointer network
can also improve performance of text summarization [17, 18]
and alleviate issues of rare or unknown words in neural machine
translation [18].
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For neural LMs, similar ideas have been proposed to bet-
ter model long-range dependency [19, 20]. The most relevant
work is the pointer sentinel mixture model (PSMM), a mixture
model of a standard LSTM and an auxiliary pointer network
which captures the unigram distribution of history words via at-
tention [19]. The mixture weight is jointly optimized. A similar
mixture model, neural cache model [20], differs from PSMM in
aspects such as the query vector for computing attention scores
is hidden state itself instead of a projected version and it does
not require model retraining. The motivation of dynamic eval-
uation [21] is similar to the neural cache model, but the imple-
mentation is different: it adjusts model parameters via gradient
updates based on partial predicted sequences during test time.
It may be viewed as a modified version of the dynamic updating
method proposed by Mikolov et al. [1].

3. Proposed Model
Language modeling can be framed as predicting the next word
(target) given preceding words (history). It usually can be ob-
served that some words tend to be much more likely targets once
they have occurred in the history. PSMM learns to “reproduce”
a word from recent history by an attention-based pointer net-
work. And its mixture weight is computed by a specially de-
signed gating mechanism. Though the PSMM achieves lower
perplexity than standard LSTM, the attention and gating mech-
anisms are relatively complex and not the only approach to do
so. We aim to achieve a similar effect with simpler models.

3.1. Pointer Component

Let us denote the hidden state of an RNNLM at time step t as
ht. Conventionally, the RNNLM output yt is determined as

yt = softmax(Wht + b), (1)

where W ∈ R
V ×H , b ∈ R

V , and yt ∈ R
V , with V and H

being the vocabulary size and hidden state dimension, respec-
tively.

We extend the output dimension by a predefined size L.
The extended part represents the L immediately preceding
words in history. Activation of these L extended units, denoted
as pt in Figure 1, is computed via a linear projection of ht from
the last hidden layer of the RNNLM. We thus have

pt = Wpht, (2)

zt = concat(Wht + b,pt), (3)

yt = softmax (zt) , (4)

where Wp ∈ R
L×H , zt ∈ R

V +L, and pt ∈ R
L. Applying

softmax on zt generates the extended output yt ∈ R
V +L.

Since the L extended outputs indicate where to copy from
the history, we call pt the pointer component of our model. It
only introduces L ×H additional parameters.

The objective for training a neural LM is to maximize the
log likelihood of training data. The loss function is written as

L(θ) = − 1

T

T∑

t=1

log(yt · st), (5)

where T is the total number of words in the training data, st
is the supervision vector, and · is vector dot product operation.
In conventional training, st is a one-hot vector with 1 in the
index of the target word. To train the proposed neural LM with
the pointer component, the supervision vector st is set to have
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Figure 1: Neural LMs with implicit cache pointers.

additional ones in history positions where the the target was
previously seen. So st is an at-least-one-hot vector.

3.2. Memory Augmented Pointer Component

The pointer component and the modified training supervision
makes an RNNLM be aware of where to copy from the history.
However, it may still be challenging for the model to memorize
which words are particularly likely to reoccur, i.e. are ”bursty”.
To learn the burstiness of words, one additional unit, denoted by
mt is introduced alongside the pointer pt, as shown in Figure 1.

This additional unit is computed by a vector dot product of
the hidden state ht and a parameter vector with the same di-
mension as ht, but is not used in computing the softmax. It
influences the probability that a word may repeat through pt.
Specifically, these additional units from the L immediately pre-
ceding word positions are concatenated to form

mt = concat(mt−(L−1), ...,mt), (6)

where mt ∈ R
L, and mt is element-wisely added to the pointer

component pt, i.e.

pt := pt +mt. (7)

Thus mt influences the output yt indirectly by modifying pt in
(3), which in turn is a part of zt in (4).

Compared with an RNNLM, the memory augmented
pointer component only has (L+1)×H total additional param-
eters while a PSMM has extra H2 + 2H parameters. Without
attention and gating mechanism, the proposed model is simpler
than PSMM and has fewer extra parameters when L ≤H .

This pointer mechanism described above is for RNNLMs,
while it can also be easily incorporated into Transformer-based
LMs. In the latter, the context vector from the last Transformer
block is treated as the hidden state in RNNLMs.

4. Experimental Setup
We conduct experiments on two text datasets, Penn Treebank
(PTB) and WikiText-2 [19], and two ASR corpora, Switch-
board (SWBD) and Wall Street Journal (WSJ). We use Kaldi
RNNLM [3] for data preprocessing on SWBD, e.g. in-
cluding the English Fisher corpus, and WSJ. Sentences in
SWBD+Fisher interleave conversation turns, as derived from
time-information in transcriptions. Statistics of the datasets are
shown in Table 1 (“sent len” is average sentence length).

We develop baselines with both LSTM and Transformer-
based LMs. Model details are present in Table 2. Plain LSTMs
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Table 1: Statistics of datasets used in experiments.

Dataset # words* |Vocab| sent len OOV (train / dev / test) Style

PTB 929K 10K 21 4.8% / 4.7% / 5.8% written
WikiText-2 2M 33K 22 2.6% / 5.4% / 6.2% written

SWBD+Fisher 34M 30K 10 8.9% / 0.0% / 5.8% spoken
WSJ 39M 123K 23 4.6% / 4.6% / 5.6% written

* The end of sentence token is included in the count of training words.

are baselines from each dataset except for WSJ. We has a
stronger baseline for PTB and WikiText-2: AWD-LSTM [22]
with frequency-agnostic word embeddings [23], denoted by
Frage-AWD-LSTM. For SWBD+Fisher, the stronger baseline is
a Transformer LM with self-attention [6]. We only experiment
with Transformer architecture on WSJ. Given our academic
computational resources, we were unable to make comparisons
with even stronger baselines, e.g. GPT and BERT, or with
the optimized architectures of [24], which requires industrial-
strength resources.

All neural LMs are on word level, implemented with Py-
torch, and optimized via SGD1. We tie the embedding and
output matrices in all setups. The dropout rate for PTB and
WikiText-2 is 0.5, while for SWBD+Fisher it is 0.1 for both
LSTM and Transformer LMs. Parameters of Frage-AWD-
LSTMs not listed in Table 2 follow the settings in [23].

Table 2: Details of neural network dimensions for various LMs.

Model Corpus Layers Units Heads

Plain LSTM All (except for WSJ) 2 650 -

Frage-AWD-LSTM PTB/WikiText-2 3 1150 -

Transformer SWBD+Fisher/WSJ 6 512/768 8

For ASR experiments on SWBD and WSJ, we use the Kaldi
toolkit [25] to train acoustic models and perform N -best rescor-
ing. Acoustic models are factorized TDNNs [26], trained using
the LF-MMI objective [27]. We do not include Fisher audio
to train acoustic models for SWBD. To rescore each of the N
hypotheses for an utterance, we find it useful to initialize the
initial LM state with the last LM state of the best hypothesis for
the previous utterance.

5. Experiments
5.1. Perplexities on PTB and WikiText-2

We first compare the proposed model with PSMM and neural
cache under the plain LSTM setup. Perplexities on PTB and
WikiText-2 are shown in Table 3. The performance gap between
the PSMM in the paper [19] and ours is mainly caused by dif-
ferent implementations of truncated back-propagation through
time (BPTT). They use an explicit truncated BPTT while we
follow the normal way discussed in [19] considering efficiency
and convenience of data preprocessing. We first concatenate
all text words and then chunk them with fixed size L. So, if
the truncated BPTT length is L, each training word on average
experiences L/2 instead of L time-steps for back-propagation.
This means each training word sees L/2 history words on aver-
age.

1For the Transformer LMs, we tried Adam with the learning rate
schedule proposed in [6], but failed to get better performance than SGD.

Table 3: Perplexities on PTB and WikiText-2 (plain LSTMs).

Model
PTB WikiText-2

#Params Dev Test #Params Dev Test

5gram KN [28] 2M - 141.2 - - -
LSTM (medium) [29] 20M 86.2 82.7 - - -

PSMM [19] 21M 72.4 70.9 47M2 84.8 80.8

LSTM 13.3M 73.6 71.9 28.5M 89.1 84.8
PSMM (Ours) 13.7M 73.5 71.6 28.9M 86.8 82.8
LSTM + Neural Cache (L=50) 13.7M 69.3 68.5 28.9M 81.3 77.0
Proposed w/o Memory Aug 13.3M 70.1 69.8 28.5M 80.6 76.7
Proposed w/ Memory Aug 13.3M 68.1 67.8 28.5M 78.2 74.3

In Table 3 “Memory Aug” refers to the memory augmented
pointer. We set history length as 100, equal to the truncated
BPTT length. Setting L = 50 for neural cache is a fair com-
parison with others. Results on both datasets show that mem-
ory augmentation provides further improvement on top of the
pointer component. And with memory augmentation, the pro-
posed model outperforms the rest on both datasets. In subse-
quent tables, “Proposed” refers to LMs with the memory aug-
mented pointer.

To verify whether the proposed approach is robust, we con-
duct experiments on a stronger baseline Frage-AWD-LSTM
setup [23]. We reproduced their results and implemented
the proposed approach on top of theirs, without tuning meta-
parameters. Perplexity results in Table 4 shows that the pro-
posed model on both datasets achieves better results than Frage-
AWD-LSTM. Further improvements are observed with increas-
ing the history length from 50 to 100, as expected. We also
observe complementary effects of the proposed model and neu-
ral cache model.

Table 4: Perplexities on PTB and WikiText-2 (Frage-AWD-
LSTM setup).

Model
PTB WikiText-2

#Params Dev Test #Params Dev Test

Frage-AWD-LSTM [23] 24M 58.1 56.1 33M 66.5 63.4

Frage-AWD-LSTM (Ours) 24M 57.7 55.3 33M 64.6 62.1
Proposed (L = 50) 24M 55.2 53.9 33M 60.7 58.5
Proposed (L = 100) 24M 54.2 53.5 33M 60.2 57.5
Proposed + Neural Cache(L=100) 24M 53.0 52.5 33M 58.0 55.6

5.2. Perplexities on SWBD and WSJ

We experiment with both LSTM- and Transformer-based LMs
on SWBD. Perplexity on dev set from Kaldi RNNLM is 50.
The history length as well as BPTT length is set to 100 for the
proposed model and PSMM. Results of Pytorch trained mod-
els are in Table 5. For LSTM-based models, the proposed ap-

Table 5: Perplexities on SWBD.

Model #Params Dev Eval’00

LSTM 26.5M 47.0 41.7
PSMM 26.9M 45.6 39.5
LSTM + Neural Cache (L=50) 26.5M 45.1 39.6
LSTM + Neural Cache (L=100) 26.5M 44.6 39.1
LSTM + Proposed 26.5M 45.9 40.4

Transformer w/o positional embedding [6] 25.0M 51.6 44.4
Transformer with positional embedding 25.1M 46.8 41.5
Transformer + Proposed 25.1M 45.0 40.2
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proach outperforms the baseline LSTM, but performs slightly
worse than the PSMM and neural cache models. For Trans-
former LMs, the proposed approach also achieves better per-
plexity than the two Transformer baselines.

We notice the performance gains of the proposed model
over both LSTM and Transformer baselines on SWBD are
smaller than on PTB and WikiText-2. To check whether this
may relate to style (only SWBD is spoken style) and average
sentence length (sentences on Switchboard are the shortest on
average), we experiment with Transformer-based LMs on WSJ.
The proposed approach reduces perplexity from 71.5 to 65.6 on
test set (eval92), compared with a baseline Transformer LM.
The improvement is relative 8.2% and in similar range with
gains on WikiText-2. And this results in 0.1 absolute WER re-
duction from 1.5 to 1.4 on the same test set by N -best rescoring.
While no conclusions can be drawn yet, experiments show that
the proposed model perform better on written-style text which
usually has longer average sentence length.

5.3. Analysis of Impact on Rare Words

One desired feature of the proposed model is that it may pre-
dict rare words better than LSTMs. To verify this, we further
examine LM performance on the test set of each dataset. We
split the vocabulary of each corpus into 10 buckets based on
word frequencies in training data such that we get a roughly
equal number of test tokens in each bucket. We then compute
the differences between the test cross entropy of the proposed
model and the LSTM baseline on words in each bucket for each
dataset. Figure 2 shows the results on WikiText-2. As expected,
larger reductions in cross-entropy are observed from the pro-
posed model on rare words. Similar trends are seen on PTB and
SWBD, though the overall perplexity improvement on SWBD
is marginal. Figures for them are omitted due to page limits.

Figure 2: Cross-entropy reduction from the proposed model w.r.t
an LSTM on WikiText-2.
5.4. Rescoring Evaluation and Analysis on SWBD

As Transformers show similar perplexity gains as LSTMs on
SWBD, we only experiment with LSTMs for N -best rescoring.
WERs on the full HUB5’00 evaluation set (Eval’00), the SWBD
subset (SWB), and Callhome subset (CH) are in Table 6. “State-
carry” means when scoring a hypothesis for current utterance,
the initial hidden state is copied from the last hidden state of
the best hypothesis for the previous utterance, instead of being
zero initialized. WER improvements by the LSTM with “state-
carry” in Table 6 indicate that cross-sentence context is useful.
Similar observations are presented in [30]. If not specified with
“w/o state-carry”, models are evaluated in the state-carry way.

To investigate the effect on WERs of rare words, we con-
duct a similar analysis as Section 5.3 does. Words with errors on

Table 6: WERs by N-best rescoring with baselines and the pro-
posed model on SWBD.

Model Eval’00 SWB CH

Kaldi RNNLM (w/o state-carry) 11.3 7.5 15.0

LSTM (w/o state-carry) 11.2 7.3 15.1
LSTM 10.9 7.1 14.5
PSMM 10.9 7.1 14.6
LSTM + Neural Cache 10.9 7.2 14.5
LSTM + Proposed 10.8 7.1 14.4

Eval’00 (<5000) are divided into 5 buckets based on frequency.
Relative WER reductions on words in these buckets in Figure 3
show that the proposed model improves performance on both
relatively rare words and very frequent ones. As expected, some
rare words occur within the context window, for example, mas-
ters and offered, are recognized correctly. Decoded output also
shows that frequent words such as train, short, and were are
correctly recognized. Though the overall WER improvement
by the proposed model is marginal, correctly recognizing rela-
tively rare words plays an important role in user experience of
ASR-based products or service.

Figure 3: Relative WER reduction on by the proposed model
w.r.t an LSTM on SWBD.

We also notice the proposed model sometimes introduces
errors on words that are wrongly recognized in first pass de-
coding. A possible reason is that the supervision vectors for
pointer components are from decoded hypotheses and hence
may contain errors. We verify this by using test transcription
in rescoring and observe a further 0.1 absolute WER reduc-
tion on Eval’00 of SWBD. The mismatched condition between
training and evaluation is a common issue for the proposed ap-
proach, PSMM, and neural cache model. To alleviate the mis-
match, word level confidence scores and error adaptive training
approaches could be considered.

6. Conclusion and Future Work
In this work, we propose a cache-inspired pointer mechanism
for neural LMs to improve the capacity of modeling long-range
dependency and better predict rare words. It can be applied to
both RNN- and Transformer-based models. Perplexity evalu-
ation show that the proposed approach generally outperforms
LSTM and PSMM and is more effective on rare words. Rescor-
ing with the proposed model on SWBD and WSJ gives marginal
WER improvements. Analysis shows that the mismatch be-
tween training and rescoring conditions (i.e. potentially in-
correct histories) may make it challenging for both the pro-
posed model and models with attention-based pointer network
to achieve large overall WER reductions. Future work is there-
fore focused on methods that can mitigate the mismatch issue.

3628



7. References
[1] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudan-
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