
AN ASYNCHRONOUS WFST-BASED DECODER FOR AUTOMATIC SPEECH
RECOGNITION

Hang Lv1,2, Zhehuai Chen2,5, Hainan Xu2, Daniel Povey4, Lei Xie1, Sanjeev Khudanpur2,3

1 Audio, Speech and Language Processing Lab (ASLP@NPU),
School of Computer Science, Northwestern Polytechnical University, Xi’an, China

2 Center of Language and Speech Processing, 3 Human Language Technology Center of Excellence,
Johns Hopkins University, Baltimore, MD, USA

4 Xiaomi Corporation, Beijing, China
5 SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University

{hanglv,lxie}@nwpu-aslp.org, chenzhehuai@sjtu.edu.cn, {hxu31,khudanpur}@jhu.edu, dpovey@xiaomi.com

ABSTRACT

We introduce asynchronous dynamic decoder, which adopts an effi-
cient A* algorithm to incorporate big language models in the one-
pass decoding for large vocabulary continuous speech recognition.
Unlike standard one-pass decoding with on-the-fly composition de-
coder which might induce a significant computation overhead, the
asynchronous dynamic decoder has a novel design where it has two
fronts, with one performing “exploration” and the other “backfill”.
The computation of the two fronts alternates in the decoding process,
resulting in more effective pruning than the standard one-pass decod-
ing with an on-the-fly composition decoder. Experiments show that
the proposed decoder works notably faster than the standard one-
pass decoding with on-the-fly composition decoder, while the accel-
eration will be more obvious with the increment of data complexity.

Index Terms— Automatic speech recognition, decoder, lattice
generation, lattice pruning

1. INTRODUCTION

Automatic speech recognition (ASR) technologies have been widely
and successfully applied in many real-world fields with recent ad-
vances in deep learning algorithms, thanks to the availability of ever
increasing computational power. In particular, acoustic model (AM)
inference and decoding are the main computing consumption parts
of an ASR system. Researchers have proposed a variety of effi-
cient methods to speedup acoustic model inference, including novel
acoustic structures [1], frame-skipping [2] and quantization [3, 4].

At the same time, the decoding technology is also constantly
developing. In the decoding field, the core problem is how to gen-
erate an accurate lattice. Having a high quality lattice allows post-
processing steps to further improve performance, e.g. lattice rescor-
ing. A common assumption underlying lattice generation methods
is the word-pair assumption. In [5], a tree-based word graph genera-
tion method is proposed to generate the lattice. In the recent decade,
the weighted finite-state transducer (WFST) based lattice generation
method is applied to decoders [6]. In [7], the decoder is expanded
down to the context-dependent phone level (i.e. CLG). After that,

Lei Xie is the corresponding author. The codes associated with this work
can be found from https://github.com/LvHang/kaldi/tree/
async-a-star-decoder

the algorithm in [8] is applied to WFSTs, expanded it down to the
context-dependent state level (i.e. HCLG), which store the informa-
tion of scores and state-level alignments. Normally, the larger the
language model (LM) is employed, the more accurate the lattice will
be generated. Nevertheless, because of the limitation of memory,
we commonly perform a two-pass decoding, where in the first pass
we generate lattices with a small (e.g. low-order or pruned) LM,
and the lattice is re-scored with a relatively big LM in the second
pass [9, 10]. But the two-pass procedure makes the latency issue un-
avoidable. To overcome it, a useful approach is to perform one-pass
on-the-fly (also called on-demand) composition decoding, in which
a decoding graph with a small LM is created and then composed
with a graph representing the difference between a large LM and the
small LM as needed, in order to generate the search space dynam-
ically during decoding. However, the decoding speed decreases as
the search space is not as optimized as offline decoding. Researchers
present many algorithms to speed it up, such as pruning [11, 12],
look-ahead [13, 14, 15] and on-the-fly hypothesis re-scoring idea
under phone-pair assumption [16]. Unfortunately, it is still difficult
to generate an exact lattice with a huge LM in a fast way, so it is
worthy to explore faster approaches.

The paper proposes a novel method to optimize the on-the-fly
composition decoding for exact lattice generation [8]. The proposed
WFST-based decoder is denoted as asynchronous dynamic decoder
(AsyncBigLM decoder). The core novel design of the proposed de-
coder is that it has two fronts, with one performing “exploration”
and the other “backfill”. An A* algorithm is employed to evaluate
which tokens worth to be back-filled. By evaluating the proposed
asynchronous dynamic decoder, we observe up to 20.17% relative
speedup. This work is open-sourced under Kaldi [17]. It is a general-
purpose decoder, which does not have any special requirements for
AMs or LMs, and will be compatible with all released Kaldi recipes.

2. WFST-BASED DECODER

2.1. Basic Decoder

In Kaldi, the standard decoding graph being used is very close to [6],
where the WFST decoding graph is

S ≡ HCLG = min(det(H ◦ C ◦ L ◦ G)), (1)

where H, C, L, G represent the Hidden Markov Model (HMM)
structure, phonetic context-dependency, lexicon and grammar re-

spectively, and ◦ represents the composition operation of WFSTs.
On an arc in HCLG, the input label is the identifier of a clustered
context-dependent HMM state, the output label corresponds to a
word, and the weight typically represents a negated log-probability.
A special symbol ε may occur on both input and output labels,
which means “no label is present”.

When we want to decode an utterance of T frames, we use the
token passing algorithm [18] on the HCLG graph. We denote the
acoustic log-likelihood graph as U, which is generated by the acous-
tic model. The algorithm can be regarded as composing U with the
HCLG graph. We denote the result of the composition as W , which
is the searching graph of the utterance.

W ≡ U ◦ HCLG. (2)

If an exact search is performed, then W would have approxi-
mately T + 1 times more states than HCLG. After the composition,
we find the best path (i.e. the path which has the lowest cost) in
the searching graph. In practice, because of the time and memory
limitations, the beam pruning [19] is performed instead of an exact
search:

P = prune(W, α), (3)

where P is the pruned graph and α is the beam value. During the
pruning operation, we discard all paths that are not within the beam
α compared to the best cost.

In fact, a token, which is indexed by HCLG-state at each frame
step, represents the potential decoding information of an input utter-
ance up to the current frame. We record it as (frame-index, HCLG-
state) pair. For each token, we keep the information of acoustic
cost, graph cost and extra cost which indicate the difference between
the best path through current token and the absolute best path under
the assumption that any currently active states at decoding front can
eventually succeed. Acoustic cost and graph cost are stored sepa-
rately so that re-scaling and rescoring with higher-order LM subse-
quently are convenient.

2.2. BigLM Decoder

The basic idea of the on-the-fly composition decoder [11], denoted
as BigLM decoder, is to create the decoding graph HCLG with a
small LM, and compose it with a WFST representing the difference
between a large LM and the small LM dynamically. Imagine that the
small LM is G, and the large one is G′. The decoding graph can be
regarded as a two-stage composition:

F = −G ◦ G′, (4)
Sbig = HCLG ◦ F, (5)

where −G has the same topology as G but with its weights negated.
We refer to F as residual grammar. In practice, we keep the HCLG
and F separately. Compared with the basic decoder, we keep the
3-tuple (frame-index, HCLG-state, F-state) for each token. At each
time step, the token passing executes the following steps:

1. Get the HCLG-state of a token, pass it on for one step in the
HCLG graph, record the output label on that arc and obtain a
new HCLG-state’.

2. Get the LM-state of the token, regard the output label as input
label and pass it on for one step in the residual grammar (i.e.
F). Obtain a new LM-state’.

3. Generate the new 3-tuple with the new HCLG-state’ and LM-
state’. The frame index depends on the input label (i.e.ε or
not) in the HCLG graph.

The BigLM decoder is memory-efficient so that richer LM
knowledge can be involved in one-pass decoding. Compared with
the lattice re-scoring method with the same beam, the BigLM de-
coder usually gives better accuracy. The benefit comes from better
pruning, where the information of the large LM is included, and the
Viterbi beam pruning is done with closer-to-optimal language model
probabilities. But the BigLM decoder is slow due to the computa-
tional overhead introduced by composition during decoding.

3. IMPROVED ASYNCHRONOUS BIGLM DECODER

3.1. Motivation

969

358

251
188

140107 85 68 58 51 46 44 42 38 35 33 31 30 30 29

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#T
o

ke
n

s

offset (time step)

Tokens Change Trend Map

Fig. 1. The trend map of tokens change. It is an illustration in the
case of a WFST-based decoder. The number of tokens decreases
exponentially and levels off gradually.

The big-picture of the proposed work is as follows: periodically,
the decoder will treat tokens on the current frame as final, and prunes
the state-level lattice to the lattice-beam – discarding tokens whose
costs are worse than the best one by a margin. A lot of tokens will be
discarded so that the previous generation operations associated with
these discarded tokens are wasted during decoding. These operations
can be saved. This can be illustrated in Figure 1, where we report
the number of tokens still alive at frame (t − offset) 1, on a lattice
generated from a randomly picked example from the Librispeech
dataset [20]. As the figure indicates, the number of active tokens
reduces rapidly when future information is used during pruning.

3.2. AsyncBigLM decoder

Firstly, let’s re-visit the A* method briefly.

H∗(s) = f (s) + g∗(s), (6)

where H∗(s) is the estimated score of the best complete path through
state s. f (s) is the score from the beginning to the state s in the
partial path, which can be obtained by accumulating the acoustic
and LM probabilities during decoding straight-forwardly. g∗(s) is
an estimate of the best partial path from state s to the end. The key
to the A* method is how to estimate a reasonable g∗(s).

Our proposed AsyncBigLM decoder is similar to the BigLM de-
coder in which its searching space is constructed in (frame-index,
HCLG-state, F-state) space. Nevertheless, it works in a different
way where it has two “decoding fronts”, namely “exploration” front

1offset = 0 . . .T1

and “backfill” front respectively. The former one occurs at the cur-
rent frame t and the latter one at frame t − offset 2. Basically, we
process the “best-in-class” token, which has the best cost for each
specific HCLG-state s on the “exploration” front. The “not-best-in-
class” tokens will be processed on the “backfill” front. We deal with
the two fronts alternately, so the sequence will be something like:
explore for frame t, backfill for frame (t − offset), explore for frame
(t + 1), backfill for frame (t + 1− offset), . . . and so on 3. The details
of these two fronts are described in the following two sections.

Implicit
link

Expanded token
（best-in-class）

Un-expanded token

Traditional method Asynchronous method: exploration front

(s1,l2)

(s1,l1)

(s3,l6)

(s2,l5)

(s3,l4)

(s2,l3)

(s3,l4)

(s2,l3)

(s1,l2)

(s1,l1)

Forward
link

Fig. 2. The difference between traditional biglm decoding and im-
proved biglm decoding. In the traditional case, each state pair is
expanded in current frame. But in the improved case, only the best
token for each HCLG state is expanded.

3.2.1. Exploration Front

We show the difference between BigLM decoder and the AsyncBigLM
decoder in the forward pass in Fig 2. Let’s write the state-pair
(HCLG-state, F-state) on each frame as (s, l) for short. On the
exploration front at frame t, the operations would be similar to the
current BigLM decoder, with one exception – suppose there are
some tokens having the same HCLG-state and different F-states on
the current frame (e.g. the (s1, l1) and (s1, l2) tokens in Fig. 2). In
the BigLM decoder, all arcs leaving each state should be processed,
but in the AsyncBigLM decoder, only the “best-in-class” token,
which has the best forward cost (the α cost in the HMM sense) in all
tokens with the same HCLG-state on the frame, will be expanded on
the exploration front (e.g. Token (s1, l1) in Fig. 2). It is also called
as “expanded” token. Then the “not-best-in-class” tokens, denoted
as “un-expanded tokens”, will not be expanded immediately (e.g.
Token (s1, l2) in Fig. 2). Instead we create implicit links from them
to the expanded token. We will consider processing all the un-
expanded tokens on the backfill front. In conclusion, the procedure
above would suppress the propagation of all but the “best-in-class”
token for each HCLG-state.

3.2.2. Backfill Front

On the backfill front, we expand the previous un-expanded tokens.
Firstly, we need to decide which un-expanded tokens should be pro-

2“offset” is set up empirically.
3The process on each front can be executed for a few frames to balance

the accuracy and speed. E.g. explore for frame t , t + 1; backfill for frame
(t − offset), (t + 1 − offset); explore for frame t + 2, t + 3; backfill for frame
(t + 2 − offset), (t + 3 − offset); . . . and so on.

Frame t-offset Frame t+1-offset Frame t+2-offset…

(s4,l9)

(s4,l8)

(s3,l7)

(s3,l6)

(s2,l5)

(s3,l4)

(s2,l3)

(s1,l2)

(s1,l1)

(s4,l10)

(s5,l12)

(s5,l13)

Asynchronous method: backfill front

Fig. 3. Backfill front: The token with same colour has the same
HCLG-state but different F-states. The “un-expanded” token fol-
lows the “expanded” token to expand itself. (The blue dotted lines
represent the implicit links and the black arrow lines represent the
forward links.)
cessed with the help of the A* method. We treat the expanded tokens
on the exploration front as final and compute the backward cost (the
β cost in the HMM sense) of all the expanded tokens from the explo-
ration front to the backfill front. Then we assume that the g∗(s) of the
un-expanded tokens are the same as the g∗(s) of the expanded tokens
that these un-expanded tokens link to (e.g. Token (s1, l2) can borrow
the g∗(s) of Token (s1, l1) in Fig. 2). So we can obtain H∗(s) of each
un-expanded token with from f (s) and the g∗(s) as shown in Eq.(6).
Then H∗(s) of each un-expanded token is compared with that of the
best token to decide whether the token should be expanded on the
backfill front.

When we expand an previous un-expanded token, we follow the
footsteps of the arcs of the corresponding expanded token, using only
the information present in the forward links leaving the expanded to-
ken, i.e., not revisiting the graph and the acoustic likelihoods. When
we create new tokens on the destination-states, the implicit links of
them are set. These implicit links will be used to expand these des-
tination tokens appropriately when we do back-fill in the next time.
The situation is illustrated in Fig 3. For example, the un-expanded
token (s1,l2) is expanded by following the expanded token (s1,l1)’s
footsteps and the implicit links of all destination tokens are set.

In addition, when processing these previously un-expanded to-
kens, we need to pass the information from the backfill front to the
exploration front immediately in two special cases:
1) On the backfill front, when we expand a token and its destination
token reaches an “existing state” (one that was created during a prior
exploration step, for instance), and the destination token has a better
forward cost than the token on existing state. In this case, before
further exploration, we would propagate the cost change along all
the paths starting from the existing state, so that in the future explo-
ration we can decode with up-to-date forward-costs. Otherwise the
exploration forward-cost would be permanently “out-of-step”.
2) A new token is created on state (s, l), and it has better cost than
the existing tokens on the same HCLG-state s. In this case, before
the further “exploration front” is performed, we expand the new to-
ken till the current frame – this guarantees we process the correct
“best-in-class” tokens on the exploration front.

4. EXPERIMENT

We use the open-source speech recognition toolkit Kaldi [17] to con-
duct the experiments. We evaluate the algorithm with the corpus–
LibriSpeech [20] (LIB) which contains about 960 hours training data
and 4 kinds of separate test data-sets (dev-clean, dev-other, test-clean
and test-other). Each of them has about 2 hours audio data.

All the acoustic models are trained with TDNN [21] structure
and lattice-free maximum mutual information [22] (LF-MMI) crite-
rion. Besides our improved AsyncBigLM decoder, we employ two
methods as baselines. The first one is “lattice-rescoring” method
which generates the lattices with a small LM and rescoring them
with a large LM. The second one is the BigLM decoder which is
described in Section 2.2. For the LibriSpeech testing, the custom-
ary standard LMs are used [20]. The small 3-gram LM (60MB) is
employed to build the HCLG graph. The mild-pruned 3-gram LM
(tgmed, 140MB), original 3-gram LM (tglarge, 760MB) and original
4-gram LM (fglarge) are used to build residual grammar separately.

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

5000 6000 7000 8000 9000 10000

W
ER

#max-active-tokens

WER:vary histogram pruning tokens(clean)

biglm-dev-clean biglm-test-clean
asyn-dev-clean asyn-test-clean

2.9
3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4

12 13 14 15 16 17

W
ER

beam

WER: vary beam (clean)

8.45

8.5

8.55

8.6

8.65

8.7

8.75

5000 6000 7000 8000 9000 10000

W
ER

#max-active-tokens

WER: vary histogram pruning threshold(other)

biglm-dev-other biglm-test-other

asyn-dev-other asyn-test-other

8.3

8.4

8.5

8.6

8.7

8.8

8.9

12 13 14 15 16 17

W
ER

beam

WER: vary beam (other)

Fig. 4. The WER between BigLM and AsyncBigLM. It shows the
performance of the two kinds of decoders are similar

In the following, unless otherwise specified, we show the
results with the histogram pruning threshold (maximum-active-
tokens=7000), beam pruning (beam=15) and lattice pruning (lattice-
beam=8) for space reason. As shown in Fig 4 and Fig 5, we tried to
tune the hyper-parameters and the trend of results is similar.

4.1. Accuracy

Table 1. WER statistics: Rescoring/BigLM/AsyncBigLM
tgmed tglarge fglarge

dev-clean 4.27/4.25/4.24 3.38/3.38/3.38 3.27/3.28/3.28
dev-other 11/11/11.04 9.14/9.1/9.1 8.7/8.59/8.55
test-clean 4.74/4.77/4.77 3.94/3.93/3.92 3.83/3.82/3.81
test-other 11.2/11.18/11.18 9.21/9.17/9.15 8.72/8.65/8.65

In speech recognition task, the most straight-forward evalua-
tion criterion is word error rate (WER). In Table 1, we compare the
WER among “Lattice-rescoring”, BigLM decoder and our proposed
AsyncBigLM decoder. It shows that WERs of the three methods are
close, but the last two methods are better than the first a little bit.
The benefit comes from the fact that the information of the large LM
is included when the decoder goes across the word boundary. Com-
pared with WERs, average log-likelihoods of lattices will provide
more accurate information for decoder evaluation. Thus in Table 2,
we compare the average log-likelihood between BigLM decoder and
AsyncBigLM decoder. As “lattice-rescoring” is generated from the
small graph, the average log-likelihood is far behind. From Table
2, we can see that the differences are extremely small (< 0.0001),
which means the accuracy of the two decoders is similar under the
same condition. As the “BigLM”-kind decoders are better, we com-
pare them further. In Figure 4, we show the results when we tune

0

0.05

0.1

0.15

0.2

0.25

0.3

5000 6000 7000 8000 9000 10000

R
TF

#MAX-ACTIVE-TOKENS

RTF:vary histogram threshold

biglm-dev-clean biglm-dev-other biglm-test-clean biglm-test-other

asyn-dev-clean asyn-dev-other asyn-test-clean asyn-test-other

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

12 13 14 15 16 17

R
TF

BEAM

RTF:vary beam

biglm-dev-clean biglm-dev-other biglm-test-clean biglm-test-other

asyn-dev-clean asyn-dev-other asyn-test-clean asyn-test-other

Fig. 5. The RTF between BigLM and AsyncBigLM. The latter one
is better than the former when the searching graph is large
the decoding beam/histogram pruning threshold. We can see that the
WERs are comparable.

Table 2. Log-likelihood statistics: BigLM/AsyncBigLM
tgmed tglarge fglarge

dev-clean 3.80056/3.80054 3.83091/3.83085 3.84251/3.84245
dev-other 3.32441/3.32439 3.34851/3.34839 3.3593/3.35919
test-clean 3.73661/3.73661 3.76555/3.76551 3.77599/3.77594
test-other 3.2984/3.2984 3.32344/3.32342 3.33388/3.33387

4.2. Speedup
Table 3. RTF: Biglm/AsyncBiglm

tgmed tglarge fglarge
dev-clean 0.1178 / 0.1056 0.1158 / 0.1141 0.1216 / 0.1233
dev-other 0.1998 / 0.1877 0.2165 / 0.2061 0.2517 / 0.2094
test-clean 0.1019 / 0.1106 0.1242 / 0.1188 0.1394 / 0.1294
test-other 0.2075 / 0.1937 0.2366 / 0.2017 0.2466 / 0.2172

Under the same pruning parameters condition, we compare the
real time factor (RTF) between BigLM and AsyncBigLM to show
the speedup performance in Table 3. The bold figures in Table 3
show the speedup rate is about 7.6−20.17%. While as shown in Fig-
ure 5, the RTFs of AsyncBigLM are better than BigLM gradually as
we increase the decoding beam or histogram pruning threshold. Ta-
ble 3 also reflects the trend that as the increase of data complexity
(i.e. noisy data or bigger LM), the speedup improvement is more
obvious. We believe the reasons are that: 1) For noisy data, it might
lead to less discriminative likelihoods from the acoustic model so
that more hypotheses with similar scores need to be processed in
BigLM decoder. 2) For the bigger LM, it will lead to a bigger resid-
ual grammar space. However, as the AsyncBigLM only propagates
the best-in-class tokens on the exploration front and skip unpromis-
ing tokens on the backfill front, it apparently saves lots of operations
from the two aspects so that the speed increase more obvious.

As the expectation in Section 4.1, the AsyncBigLM decoder
achieves the benefit from saving searching operations. We count the
effective propagation times on both BigLM decoder and AsyncBigLM
decoder. The propagation statistics comparison further shows the
reasons of acceleration: 1) the propagation times of asynchronous
decoder is significantly less than that of the BigLM decoder on
the exploration front; 2) the propagation times on the backfill front
is limited and the total times of AsyncBigLM decoder is still less
than the BigLM decoder’s. They prove the validity of our proposed
asynchronous method.

Table 4. The effective propagation times (million)
Exploration Backfill

BigLM 5.97 0
AsyncBigLM 3.84 0.3

5. CONCLUSION
In this paper, we proposed a smart AsyncBigLM decoder with A*
method to speedup the one-pass on-the-fly composition decoding.
The proposed algorithm can achieve up to 20.17% speedup rate.
More importantly, the speedup would be more prominent and sta-
ble as the complexity of data increases.

6. REFERENCES

[1] Vijayaditya Peddinti, Yiming Wang, Daniel Povey, and San-
jeev Khudanpur, “Low latency acoustic modeling using tem-
poral convolution and lstms,” IEEE Signal Processing Letters,
vol. 25, no. 3, pp. 373–377, 2017.

[2] Golan Pundak and Tara Sainath, “Lower frame rate neural net-
work acoustic models,” 2016.

[3] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez,
Montse Gonzalez Arenas, Kanishka Rao, David Rybach,
Ouais Alsharif, Haşim Sak, Alexander Gruenstein, Françoise
Beaufays, et al., “Personalized speech recognition on mobile
devices,” in 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
5955–5959.

[4] Xu Xiang, Yanmin Qian, and Kai Yu, “Binary deep neural
networks for speech recognition.,” in INTERSPEECH, 2017,
pp. 533–537.

[5] Stefan Ortmanns, Hermann Ney, and Xavier Aubert, “A word
graph algorithm for large vocabulary continuous speech recog-
nition,” Computer Speech & Language, vol. 11, no. 1, pp.
43–72, 1997.

[6] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recognition,”
Computer Speech & Language, vol. 16, no. 1, pp. 69–88, 2002.

[7] Andrej Ljolje, Fernando Pereira, and Michael Riley, “Efficient
general lattice generation and rescoring,” in Sixth European
Conference on Speech Communication and Technology, 1999.

[8] Daniel Povey, Mirko Hannemann, Gilles Boulianne, Lukáš
Burget, Arnab Ghoshal, Miloš Janda, Martin Karafiát, Stefan
Kombrink, Petr Motlı́ček, Yanmin Qian, et al., “Generating
exact lattices in the wfst framework,” in 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 4213–4216.

[9] Andreas Stolcke, Yochai Konig, and Mitchel Weintraub, “Ex-
plicit word error minimization in n-best list rescoring,” in Fifth
European Conference on Speech Communication and Technol-
ogy, 1997.

[10] Hainan Xu, Tongfei Chen, Dongji Gao, Yiming Wang, Ke Li,
Nagendra Goel, Yishay Carmiel, Daniel Povey, and San-
jeev Khudanpur, “A pruned rnnlm lattice-rescoring algorithm
for automatic speech recognition,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5929–5933.

[11] Takaaki Hori, Chiori Hori, and Yasuhiro Minami, “Fast on-
the-fly composition for weighted finite-state transducers in 1.8
million-word vocabulary continuous speech recognition,” in
Eighth International Conference on Spoken Language Pro-
cessing, 2004.

[12] David Nolden, Ralf Schlüter, and Hermann Ney, “Search space
pruning based on anticipated path recombination in lvcsr,”
in Thirteenth Annual Conference of the International Speech
Communication Association, 2012.

[13] Hagen Soltau, Florian Metze, Christian Fügen, and Alex
Waibel, “Efficient language model lookahead through poly-
morphic linguistic context assignment,” in 2002 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing. IEEE, 2002, vol. 1, pp. I–709.

[14] Hagen Soltau and George Saon, “Dynamic network decod-
ing revisited,” in 2009 IEEE Workshop on Automatic Speech
Recognition & Understanding. IEEE, 2009, pp. 276–281.

[15] Jung-Gi Baek, Sang-Hun Yoon, and Jong-Wha Chong, “Mem-
ory efficient pipelined viterbi decoder with look-ahead trace
back,” in ICECS 2001. 8th IEEE International Conference on
Electronics, Circuits and Systems (Cat. No. 01EX483). IEEE,
2001, vol. 2, pp. 769–772.

[16] Takaaki Hori, Yoshiaki Noda, and Shoichi Matsunaga, “Im-
proved phoneme-history-dependent search method for large-
vocabulary continuous-speech recognition,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 86, no. 6, pp. 1059–
1067, 2003.

[17] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding. IEEE Signal Process-
ing Society, 2011, number CONF.

[18] Stephen John Young, NH Russell, and JHS Thornton, To-
ken passing: a simple conceptual model for connected speech
recognition systems, Citeseer, 1989.

[19] Hugo Van Hamme and Filip Van Aelten, “An adaptive-beam
pruning technique for continuous speech recognition,” in Pro-
ceeding of Fourth International Conference on Spoken Lan-
guage Processing. ICSLP’96. IEEE, 1996, vol. 4, pp. 2083–
2086.

[20] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: an asr corpus based on public do-
main audio books,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2015, pp. 5206–5210.

[21] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur,
“A time delay neural network architecture for efficient model-
ing of long temporal contexts,” in Sixteenth Annual Conference
of the International Speech Communication Association, 2015.

[22] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, Vimal Manohar, Xingyu Na, Yiming Wang, and
Sanjeev Khudanpur, “Purely sequence-trained neural networks
for asr based on lattice-free mmi.,” 2016.

