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ABSTRACT
This paper describes, and evaluates on a large scale, the lattice
based framework for discriminative training of large vocabulary
speech recognition systems based on Gaussian mixture hidden
Markov models (HMMs). The paper concentrates on the maximum
mutual information estimation (MMIE) criterion which has been
used to train HMM systems for conversational telephone speech
transcription using up to 265 hours of training data. These ex-
periments represent the largest-scale application of discriminative
training techniques for speech recognition of which the authors are
aware, and have led to significant reductions in word error rate for
both triphone and quinphone HMMs compared to our best models
trained using maximum likelihood estimation. The MMIE lattice-
based implementation used; techniques for ensuring improved gen-
eralisation; and interactions with maximum likelihood based adap-
tation are all discussed. Furthermore several variations to the
MMIE training scheme are introduced with the aim of reducing
over-training.

1. INTRODUCTION

The model parameters in HMM based speech recognition
systems are normally estimated using Maximum Likelihood
Estimation (MLE). If speech really did have the statistics as-
sumed by an HMM (model correctness) and an infinite train-
ing set was used, the global maximum likelihood estimate1

is optimal in the sense that it is unbiased with minimum
variance [19]. However, when estimating the parameters of
HMM-based speech recognisers, training data is not unlim-
ited and the true data source is not an HMM. In this case
examples can be constructed where alternative discrimina-
tive training schemes such as the Maximum Mutual Infor-
mation Estimation (MMIE) can provide better performance
than MLE [20].

During MLE training, model parameters are adjusted to
increase the likelihood of the word strings corresponding
to the training utterances without taking account of the
probability of other possible word strings. In contrast to
MLE, discriminative training schemes take account of pos-
sible competing word hypotheses and try and reduce the
probability of incorrect hypotheses (or recognition errors
directly). Discriminative schemes have been widely used

1It should be noted that conventional HMM training schemes only find
a local maximum of the likelihood function.

in small vocabulary recognition tasks, where the relatively
small number of competing hypotheses makes training vi-
able e.g. [21, 14, 28]. For large vocabulary tasks, especially
on large datasets there are two main problems: generalisa-
tion to unseen data in order to increase test-set performance
over MLE; and providing a viable computation framework
to estimate confusable hypotheses and perform parameter
estimation.

The computation problem can be ameliorated by the use
of a lattice-based discriminative training framework [30] to
compactly encode competing hypotheses. This has allowed
investigation of the use of maximum mutual information es-
timation (MMIE) techniques on large vocabulary tasks and
large data sets and a variation of the method described in
[30] is used in the work described in this paper.

For large vocabulary tasks, it has often been held that
discriminative techniques can mainly be used to produce
HMMs with fewer parameters rather than increase absolute
performance over MLE-based systems. The key issue here
is one of generalisation and this is affected by the amount
of training data available, the number of HMM parameters
estimated, and the training scheme used.

Some discriminative training schemes, such as frame-
discrimination [14, 24], try to over-generate training set con-
fusions to improve generalisation. Similarly in the case of
MMIE-based training, an increased set of training set con-
fusions can improve generalisation. The availability of very
large training sets for acoustic modelling and the computa-
tional power to exploit these has also been a primary moti-
vation for us to carry out the current investigation of large-
scale discriminative training.

The paper first introduces the MMIE training criterion
and its optimisation using the Extended Baum-Welch al-
gorithm. The use of lattices in MMIE training is then de-
scribed, and the particular methods used in this paper are in-
troduced. Sets of experiments for conversational telephone
transcription are presented that show how MMIE training
can be successfully applied over a range of training set sizes.
The effect of methods to improve generalisation, the inter-
action with maximum-likelihood adaptation and variations
on the basic training scheme to avoid over-training are then
discussed.



2. MMIE CRITERION
MLE increases the likelihood of the training data given

the correct transcription of the training data: models
from other classes do not participate in the parameter re-
estimation. MMIE training was proposed in [1] as an alter-
native to MLE and maximises the mutual information be-
tween the training word sequences and the observation se-
quences. When the language model (LM) parameters are
fixed during training (as they are in this paper and in al-
most all MMIE work in the literature), the MMIE criterion is
equivalent to Conditional Maximum Likelihood Estimation
(CMLE) proposed in [19]. CMLE increases the a posteriori
probability of the word sequence corresponding to the train-
ing data given the training data. However the technique is
still normally referred to as MMIE and we use this term in
this paper.

For
�

training observations ���������
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with corresponding transcriptions ������� , the CMLE/MMIE
objective function is given by
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where 6B7 is the composite model corresponding to the
word sequence � and

:< � $ is the probability of this se-
quence as determined by the language model. The summa-
tion in the denominator of (1) is taken over all possible word
sequences

@� allowed in the task and it can be replaced by
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where 6 DFHG encodes the full acoustic and language model
used in recognition.

It should be noted that optimisation of (1) requires the
maximisation of the numerator term 1 2  � � 4 6 7 9 $ , which
is identical to the MLE objective function, while simul-
taneously minimising the denominator term 1 2  �K4 6 D�FHG $ .
Since the denominator includes all possible word sequences
(including the correct one) the objective function has a max-
imum value of zero. The minimisation of the denominator
might ordinarily involve doing a recognition pass on all the
training data for each iteration of MMIE training. While this
is viable for small vocabulary tasks, it is too computation-
ally expensive for large vocabulary tasks when, for instance,
cross-word context dependent acoustic models are used in
conjunction with a long span language model. Therefore, an
approximation to the denominator is required for the com-
putational load to be feasible.

Another notable feature of the MMIE objective function
is that it gives greater weight to training utterances which
have a low posterior probability of the correct word se-
quence. This feature, further discussed in [12, 28], contrasts
with the situation in MLE where all training utterances are
equally weighted. While it has been argued that MMIE may
give undue weight to outlier training utterances, attempts in
[28] to modify the criterion to deweight training utterances

far from the decision boundary, in a similar way to Mini-
mum Classification Error (MCE) training [2], did not result
in improved recognition performance.

3. EXTENDED BAUM-WELCH ALGORITHM
The MMIE objective function can be optimised by any of

the standard gradient-based methods although these are ei-
ther slow to converge or, if using second order information,
may be impractical for very large systems. Hence in this
work, we have used a version of the Extended Baum-Welch
(EBW) algorithm for optimisation.

The EBW algorithm uses re-estimation formulae reminis-
cent of those used by the standard Baum-Welch algorithm
for MLE training. It is shown in [9] that a re-estimation for-
mula of the form
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will converge to give a local optimum of
�a b"3$

for a suffi-
ciently large value of the constant Z .

Mean and Variance Updates
For continuous density HMMs, such as used in this work,

the formula in (3) does not lead to a closed form solution for
the re-estimation of means and variances. However, using
a discrete approximation to the Gaussian distribution, Nor-
mandin [22] showed that the mean of a particular dimension
of the Gaussian for state c , mixture component d , e Pgf and
the corresponding variance, h 	Pgf (assuming diagonal covari-
ance matrices) can be re-estimated by

@e Pgfi&Bj�k G�l�mPgf  � $on k D�FHGPgf  � $�p X[Z e Pgf
j�q G�l�mPgf n q D�FHGPgf p X[Z (4)
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(5)
In these equations, the k P*N fs � $ and k P*N fs � 	 $ are sums of
data and squared data respectively, weighted by occupancy,
for mixture component d of state c , and the Gaussian occu-
pancies (summed over time) are q Pgf . The superscripts tCu-v
and wyxt refer to the model corresponding to the correct word
sequence, and the recognition model for all word sequences,
respectively.

Setting Z
A key issue in using the update equations, (4) and (5),

is setting the constant Z . If the value set is too large then
training is very slow (but stable) and if it is too small the
updates may not increase the objective function on each it-
eration. A useful lower bound on Z is the value which en-
sures that all variances remain positive. In [30] this lower
bound constraint was shown to lead to a system of quadratic
inequalities to find a suitable value of Z , and in fact Z was
set to twice that value. Furthermore, using a single global
value of Z can lead to very slow convergence, and in [30] a
phone-specific value of Z was used.



In preliminary experiments for the work reported here, it
was found that the convergence speed could be further im-
proved if Z was set on a per-Gaussian level, i.e. a Gaussian
specific Z Pgf was used. It was set at the maximum of i) twice
the value necessary to ensure positive variance updates for
all dimensions of the Gaussian; or ii) a global constant

�
multiplied by the denominator occupancy q DFHGPgf .

The bulk of the experiments in this paper use a value
of
� &��

. However, in Section 8, the use of other val-
ues for

�
are investigated: either

� &��
or a value termed� &����

,
	 v ��
 . The latter setting is found by first computing

the value of Z Pgf as twice the minimum value for positive
variances for each Gaussian and then setting

�
to half the

maximum value of
� W��������W� for all Gaussians. The scheme re-

sults in a way of setting
�

that is fairly task and HMM-set
independent. When

� &����
,
	 v ��
 was used for the experi-

ments in this paper,
�

increased from about 2 to 6 as training
progressed.

Mixture Weight & Transition Probability Updates
The originally proposed re-estimation formula for the

mixture weight parameters � Pgf follows directly from (3)

@� Pgf & � Pgf�� RSR�� W� X�� �= >f � P >f � RSR�� W"! X#� � (6)

The constant � is chosen such that all mixture weights are
positive. However, the derivative$ �$ � Pgf & �

� Pgf  q G�lmPgf n q DFHGPgf $
(7)

is extremely sensitive to small-valued parameters. As an al-
ternative, a more robust approximation for the derivative was
suggested in [18]:$ �$ � Pgf&% q G�l�mPgf= >f q G�lmP >f n q D�FHGPgf= >f q DFHGP >f (8)

This method was used, for example, by [21, 30]. Unfor-
tunately this update rule can lead to instability as training
proceeds and so an alternative was sought.

The alternative mixture weight update rule suggested here
is free from smoothing constants, and informal experiments
have shown that normally it results in a faster increase in the
overall MMIE objective function than the above approach
with the derivative approximation in (8).

For a particular state c , the mixture weight update used in
this paper consists of finding the mixture weights

@� Pgf which
maximise the following function:'(f )+� q G�l�m

Pgf
,/.�0

@� Pgf n q D�FHGPgf� Pgf @� Pgf (9)

subject to the sum-to-one constraint. In (9), the � Pgf are the
original weights and the q Pgf are the mixture component oc-
cupancies. A proof that maximising (9) will increase the

objective function is given in [25] and uses the assumption
that as each mixture weight is varied, the mixture component
occupancies that would be obtained from forward-backward
alignment will vary by a factor that is between 1 and the ra-
tio of the new to the old mixture weights. For the purposes
of the proof, the mixture weight occupancies must also be
assumed to be independent of the other parameters in the
HMM.

The optimisation of (9) may be performed using a generic
function-optimisation routine. However, in the experiments
reported here an iterative scheme was used which involves
(repeatedly) taking each mixture weight in turn and find-
ing the optimal value of that weight assuming the others’
relative values are fixed while maintaining the sum-to-one
constraint.

The update equation for a single row of a transition matrix
is performed in the same way as the mixture weight update.
Note that for both the mixture weights and transition proba-
bilities, if the denominator occupancies are zero the update
is equivalent to the standard MLE update.

It should be noted that for the decision-tree tied-state mix-
ture Gaussian HMMs used in the experiments reported here,
the effect of MMIE training on the mixture weights (and
hence the mixture weight update itself) is relatively unim-
portant. Of course, for an HMM system using tied mixture
models, the mixture weight update rule is of much greater
significance.

4. LATTICE-BASED MMIE TRAINING:
PREVIOUS WORK

The parameter re-estimation formulae presented in Sec-
tion 3 require the generation of occupation and weighted
data counts for both the numerator terms which rely on us-
ing the correct word sequence and the denominator terms
which use the recognition model.

The calculation of the denominator terms directly is com-
putationally very expensive and so approximations to the de-
nominator have been suggested. Early work suggested us-
ing ( -best lists [3] which are calculated once (from an MLE
model set) to approximate the set of possible sentences dur-
ing MMIE training. However, for even moderately complex
tasks and long sentences only a very small number of the
probable sentences will be included. An alternative is to use
some type of lattice structure to represent the various likely
alternatives. In [23] a looped lattice model was proposed
which could include any pronunciation of a particular word
at most once. The approach was evaluated using a 2000
word task with a few hours of training data.

A more sophisticated approach to the use of word lattices
that fully encode sequential acoustic and language model
constraints was presented in [29, 30]. The lattices used were
generated by the HTK large vocabulary recognition system
[31]. The HTK lattices are composed of nodes which repre-
sent the ends of words at particular points in time and the
arcs that connect these represent particular word pronun-
ciations. The denominator lattices often contain repeated



arcs/nodes to encode slightly different start/end times and
different start/end context-dependent HMMs due to variant
previous/following words. Lattices are generated once using
an MLE HMM set, and then used repeatedly for several iter-
ations of MMIE training. The technique also uses lattices for
collecting the numerator statistics to represent the possibility
of alternative pronunciations. In cases where the recogniser-
generated denominator lattices did not contain the correct
sequence, the denominator lattice was formed by merging
the recogniser lattice with the numerator lattice.

Given word lattices for the numerator and denominator,
the technique in [30] performed at each iteration a forward-
backward pass at the word lattice node/arc level to gener-
ate the posterior probability of a particular lattice arc occur-
ring. The Viterbi state-level segmentation for for each arc
was found, and used with the arc posterior probability to
calculate the statistics for the EBW re-estimation formulae.
The method was used to train HMM sets for up to 65k word
vocabulary tasks for the North American Business News
corpus using cross-word triphone acoustic models, N-gram
LMs, and up to 66 hours of training data.

5. IMPROVING MMIE GENERALISATION
A key issue in MMIE training (and discriminative train-

ing in general) is the generalisation performance i.e. the dif-
ference between training set and test set accuracy. While
MMIE training often greatly reduces training set error from
an MLE baseline, the reduction in error rate on an indepen-
dent test set is normally much less, i.e., compared to MLE,
the generalisation performance is poorer. Furthermore, as
with all statistical modelling approaches the more complex
the model the poorer the generalisation. Since fairly com-
plex models are needed to obtain optimal performance with
MLE, it can be difficult to improve these with MMIE train-
ing. Therefore it has been widely thought that the major
application of discriminative training techniques to large vo-
cabulary recognition tasks is to reduce error rates when rel-
atively few parameters are used rather than to improve the
best achievable error rates from MLE training: this paper is
aimed at challenging that view.

There have been a number of approaches to try to im-
prove generalisation performance for MMIE-type training
schemes, some of which are discussed below. These meth-
ods involve trying to increase the amount of confusable data
processed during training in some way. The Frame Dis-
crimination (FD) technique, that we have previously investi-
gated, is discussed first. In this paper we have experimented
with two other techniques aimed at improving generalisa-
tion: weaker language models and acoustic model scaling.

Frame Discrimination
Frame Discrimination (FD) [14] replaces the recognition

model probability in the denominator of (1) with all Gaus-
sians in parallel.2 FD therefore removes many constraints
that make some Gaussian sequences very unlikely (phone

2A unigram Gaussian level language model based on training set occur-
rences is used.

model, lexical and LM) but provides far more “confusable”
states for any particular utterance. This in turn, as would
be expected, reduces training set performance compared to
MMIE but improves generalisation. In [24] it was shown
that the improvements obtained by FD were at least as good
as those reported by MMIE using the same models and task
setup in [30]. It could be argued that FD over-generalises the
confusable data set by modelling confusions that will never
in practice arise, and will perform more poorly for the most
challenging recognition tasks with greater inherent acoustic
confusability. It was reported in [32] that FD didn’t improve
error rates over MLE trained models for a broadcast news
recognition task.

Weakened Language Models
In [27] it was shown that improved test-set performance

could be obtained using a unigram LM during MMIE train-
ing, even though a bigram or trigram was used during recog-
nition.3 The aim is to provide more focus on the discrimi-
nation provided by the acoustic model by loosening the lan-
guage model constraints. In this way, more confusable data
is generated which improves generalisation. The use of a
unigram LM during MMIE training is further investigated
in this paper.

Acoustic Model “Scaling”
When combining the likelihoods from an HMM-based

acoustic model and the LM it is usual to scale the LM log
probability. This is necessary because, primarily due to in-
valid modelling assumptions, the HMM underestimates the
probability of acoustic vector sequences leading to a very
wide dynamic range of likelihood values.

An alternative to LM scaling is to multiply the acoustic
model log likelihood values by the inverse of the LM scale
factor (acoustic model scaling). This will produce the same
effect as language model scaling when considering only a
single word sequence as for Viterbi decoding.4 However,
when likelihoods from different sequences are added, such
as in the forward-backward algorithm or for the denomina-
tor of (1), the effects of LM and acoustic model scaling are
very different. If language model scaling is used, one partic-
ular state-sequence tends to dominate the likelihood at any
point in time and hence dominates any sums using path like-
lihoods. However, if acoustic scaling is used, there will be
several paths that have fairly similar likelihoods which make
a non-negligible contribution to the summations. Therefore
acoustic model scaling tends to increase the confusable data
set in training by broadening the posterior distribution of
state occupation q D�FHGPgf that is used in the EBW update equa-
tions. This increase in confusable data also leads to im-
proved generalisation performance.

It should be noted that acoustic scaling is used for similar
reasons when finding word posterior probabilities from lat-

3Although a unigram was used in MMIE training, the confusable data
was also constrained by the word lattices used which were generated with
a trigram LM.

4The acoustic model and LM scaling effects will be identical for the
Viterbi path only if all components of the acoustic model log likelihood are
scaled including the contribution from transition probabilities.



tices [17, 4] which are used for either posterior decoding or
confidence estimation.

6. CURRENT LATTICE-BASED TRAINING
METHODS

The lattice-based training technique used in this paper
is based on that in [30] but has various differences in de-
tail. Furthermore several variants of the current scheme have
been investigated.

The first step is to generate word-level lattices, normally
using an MLE-trained HMM system and a bigram LM ap-
propriate for the training set. This step is normally per-
formed just once and for the experiments in Section 7 the
word lattices were generated in about 5x Real-Time (RT).5

The second step is to generate phone-marked lattices
which label each word lattice arc with a phone/model se-
quence and the Viterbi segmentation points. These are are
found from the word lattices and a particular HMM set,
which may be different to the one used to generate the orig-
inal word-level lattices. In our implementation, these phone
marked lattices also encode the LM probabilities used in
MMIE training which again may be different to the LM used
to generate the original word-level lattices. This stage typi-
cally took about 2xRT to generate triphone-marked lattices
for the experiments in Section 7, although the speed of this
process could be considerably increased.

Given the phone-marked lattices for the numerator and
denominator of each training audio segment, two alternative
implementations have been used to generate the Gaussian-
level occupation probabilities and associated weighted-data
statistics needed for EBW updates. The full-search imple-
mentation aims to perform a full forward-backward pass
at the state-level constrained by the lattice. Pruning is
performed by using the phone-marked lattice segmenta-
tion points extended by a short-period in each direction.6

However in the alternative exact-match case, a state-level
forward-backward pass for each context-dependent model
instance in the lattice is performed solely between the
Viterbi segmentation points for each model. In both cases,
the search was also optimised as far as possible by com-
bining redundantly repeated models which first requires the
conversion to a model-level lattice. For the recognition ex-
periments in this paper, these model-level lattices typically
have an average lattice density of several hundred arcs. Dif-
ferent optimisations were possible in the two cases and these
are discussed below.

Details of the Full-Search Implementation
For the full-search case, the model-level lattice is com-

pacted by combining instances of the same model which oc-
cur in the same position in the same word and overlap in
time. A single instance of the model is created with start/end
times the minimum/maximum of the two original models.
The set of arcs entering/leaving the new combined arc is set

5All run times are measured on an Intel Pentium III running at 550MHz.
6Typically 50ms at both the start and end of each phone.

to the union of the original sets of transitions, with dupli-
cates removed. This process of lattice reduction is repeated
until no further merges are possible and decreases the aver-
age lattice density by up to an order of magnitude. A full
forward-backward search on the resulting lattice is then per-
formed, with the time information for each phone, extended
by a small margin, used for pruning. The acoustic likeli-
hood scaling is performed by directly scaling the values of
the state output distribution log probability densities. Typi-
cally, the full-search method takes about 1xRT per iteration
for the experiments in Section 7.

Details of the Exact-Match Implementation
The exact-match approach calculates the likelihood of

each phone segment in the lattice, based on its start and end
times, and then accumulates statistics for the EBW updates
using the forward-backward algorithm. There are two pos-
sible advantages to this approach. Firstly, only one forward-
backward pass is necessary for a given model with given
start and end times, no matter how many times it appears
in the lattice and hence the exact-match typically runs twice
as quickly as the full-search method. Secondly, the segment-
level acoustic log likelihoods can be scaled as a whole which
keeps multiple parallel confusable models while retaining
sharp transitions between states. However, the fact that the
segmentation times in the phone-marked lattices are treated
as constants across multiple iterations of MMIE training
could lead to reduced accuracy.

7. MMIE EXPERIMENTS WITH HUB5 DATA
This section describes a series of MMIE-training exper-

iments using the Cambridge University HTK (CU-HTK)
system for the transcription of conversational telephone
data from the Switchboard and Call Home English corpora
(“Hub5” data). These experiments were performed in prepa-
ration for the NIST March 2000 Hub5 Evaluation.

The experiments investigated the effect of different train-
ing set and HMM set sizes and types; the use of acous-
tic likelihood scaling and unigram LMs in training and any
possible interactions between MMIE training and maximum
likelihood linear regression-based adaptation. All the ex-
periments in this section used the full-search lattice-training
implementation and a value of

�B& �
to set the Gaussian-

specific Z for EBW updates. The effect of alternatives will
be discussed in Section 8.

Basic CU-HTK Hub5 System
The CU-HTK Hub5 system is a continuous mixture den-

sity, tied-state cross-word context-dependent HMM system
based on the HTK HMM Toolkit. The full system operates
in multiple passes, using more complex acoustic and lan-
guage models and unsupervised adaptation in later passes.

Incoming speech is parameterised into cepstral coeffi-
cients and their first and second derivatives to form a 39
dimensional vector every 10ms. Cepstral mean and vari-
ance normalisation and vocal tract length normalisation is
performed for each conversation side in both training and
test.



The HMMs are constructed using decision-tree based
state-clustering [33] and both triphone and quinphone mod-
els can be used. The lexicon used in the experiments below
was either a 27k vocabulary (as used in [10]) or a 54k vocab-
ulary and the core of this dictionary is based on the LIMSI
1993 WSJ lexicon. The system uses word-based N-gram
LMs estimated from an interpolation of Hub5 acoustic train-
ing transcriptions and Broadcast News texts. In the experi-
ments reported here, trigram LMs are used unless otherwise
stated.

The system operates in multiple passes. Triphone models
are used in word lattice generation. The lattices are used for
both later recognition passes and also during system devel-
opment. Lattice rescoring was used to generate many of the
results given below.

Baseline Models and Hub5 Training/Test Data
Three different training sets and three different test sets

were used in the MMIE experiments. The different training
sets, ranging from 18 hours to 265 hours in size were used
to investigate how well the MMIE approach scales to very
large training sets while still allowing many experiments to
be run.

The characteristics of the three training sets are shown in
Table 1. The Minitrain set, defined by BBN, used BBN-
provided transcriptions, while the h5train00 sets used tran-
scriptions based on those provided by Mississippi State Uni-
versity (MSU). All the training sets contain data from the
Switchboard I (SWB1) corpus and the h5train00 sets also
contain Call Home English (CHE) data. The h5train00sub
set is a subset of h5train00 and covers all of the training
speakers in the SWB1 portion of h5train00, and a subset of
CHE.

Training Total Conversation Sides
Set Time (hrs) SWB1 CHE

Minitrain 18 398 –
h5train00sub 68 862 92

h5train00 265 4482 235

Table 1: Hub5 training sets used.

The test sets used were a subset of the 1997 Hub5 eval-
uation set, eval97sub, containing 10 conversation sides of
Switchboard II (SWB2) data and 10 of CHE; the 1998 eval-
uation data set, eval98, containing 40 sides of SWB2 and 40
CHE sides (in total about 3 hours of data) and the March
2000 evaluation data set, eval00, which has 40 sides of
SWB1 and 40 CHE sides.

Training Number of Gaussians Gaussians
Set Speech States per state per hour

Minitrain 3088 12 2060
Minitrain 3088 6 1030

h5train00sub 6165 12 1090
h5train00 6165 16 370

Table 2: Hub5 Triphone Model Sets

Baseline gender independent sets of triphone HMMs were
created for each training set and trained using MLE. The
number of clustered speech states in each triphone model
set; the number of Gaussians per state; and the average num-
ber of Gaussians to be trained per hour of training data is
given in Table 2. Note that there are two versions of the
MLE model set for Minitrain.

Experiments with 18 Hours Training
Initially we investigated MMIE training using Minitrain

with 12 Gaussian/state HMMs which were our best MLE
trained models. Lattices were generated on the training set
using a bigram LM. The bigram 1-best hypotheses had a
24.6% word error rate (WER) and a Lattice WER (LWER)
[31] of 6.2%.

MMIE %WER
Iteration Acoustic Scaling LM Scaling

0 (MLE) 50.6 50.6
1 50.2 51.0
2 49.9 51.3
3 50.5 51.4
4 50.9 –

Table 3: 18 hour experiments with 12 mixture component models
(eval97sub): comparison of acoustic model and language model
scaling.

The Minitrain 12 Gaussian/state results given in Table 3
compare acoustic and language model scaling for several it-
erations of MMIE training. It can be seen that acoustic scal-
ing helps avoid over-training and the best WER is after 2
iterations. The training set lattices regenerated after a sin-
gle MMIE iteration gave a WER of 16.8% and a LWER of
3.2%, showing that the technique is very effective in reduc-
ing training set error. However, it was found that these re-
generated lattices were no better to use in subsequent train-
ing iterations and so all further work used just the initially
generated word lattices.

The advantage from MMIE training for the 12 Gaussian
per state system is small and so a system with fewer Gaus-
sians per state was investigated. As shown in Table 2 the
6 Gaussian system has approximately the same ratio of pa-
rameters to training data as our h5train00sub system.

MMIE %WER
Iteration Lattice Bigram Lattice Unigram

0 (MLE) 51.5 51.5
1 50.0 49.7
2 49.8 49.6
3 50.1 50.0
4 50.8 –

Table 4: 18 hour experiments with 6 mixture component models
(eval97sub): comparison of lattice LMs.

The results from MMIE training of the 6 Gaussian/state
Minitrain system (with acoustic scaling) are shown in Ta-
ble 4 and again show the best performance after two MMIE



iterations. Furthermore the gain over the MLE system is
1.7% absolute if a bigram LM is used and 1.9% absolute
if a unigram LM is used: the 6 Gaussian per state MMIE-
trained HMM set now slightly outperforms the 12 Gaussian
system. Furthermore it can be seen that using a weakened
LM (unigram) improves performance a little and in fact the
gain from using a unigram is greater if no acoustic scaling
is performed: both acoustic scaling and the weakened LM
increase the amount and diversity of confusable data.

Experiments with 68 Hours Training
The effect of using the 68 hour h5train00sub set was

investigated next and tests were performed on both the
eval97sub and eval98 sets. In this case the phone-marked
denominator lattices had a LWER of 7.4%. The results of
MMIE training are shown in Table 5.

MMIE %WER
Iteration eval97sub eval98

0 (MLE) 46.0 46.5
1 43.8 45.0
2 43.7 44.6
3 44.1 44.7

Table 5: Word error rates on eval97sub and eval98 using
h5train00sub training.

Again it can be seen that the peak improvement comes
after two iterations, but in this case there is an even larger
reduction in error rate than was seen for the 6 Gaussian/state
Minitrain experiments: 2.3% absolute on eval97sub and
1.9% absolute on eval98. The word error rate for the 1-best
hypothesis from the original bigram word lattices measured
on 10% of the training data was 27.4%. The MMIE models
obtained after two iterations on the same portion of training
data gave an error rate of 21.2%, so again MMIE provided a
very sizeable reduction in training set error.

Further experiments using this same training set/baseline
model set are given in Section 8.

Triphone Experiments with 265 Hours Training
The good performance on smaller training sets led us

to investigate MMIE training using all the available Hub5
data: the 265 hour h5train00 set. The h5train00 set contains
267,611 segments and numerator and denominator word
level lattices were created for each trained segment, and
from these, phone-marked lattices were generated.

MMIE %WER
Iteration eval97sub eval98

0 (MLE) 44.4 45.6
1 42.4 43.7

1 (3xCHE) 42.0 43.5
2 41.8 42.9

2 (3xCHE) 41.9 42.7

Table 6: Word error rates when using h5train00 training with and
without CHE data weighting (3xCHE).

We also experimented with data-weighting with this setup
during MMIE training. The rationale for this is that while
the test data sets contain equal amounts of Switchboard and
CHE data, the training set is not balanced. Therefore we
gave a 3x higher weighting to CHE data during training.
The results of these experiments on both the eval97sub and
eval98 test sets are shown in Table 6. It can be seen that
without data weighting there is an improvement in WER of
2.6% absolute on eval97sub and 2.7% absolute on eval98.

Data weighting gives a further 0.2% absolute on eval98,
but rather variable results on eval97sub. However if data
weighting is applied during MLE training for eval97sub the
MLE baseline improves by 0.7% absolute. It might be con-
cluded that the extra weight placed on poorly recognised
data by MMIE training relative to MLE reduces the need
for the data weighting technique.

Quinphone Model Training
Since the CU-HTK Hub5 system also uses quinphone

models, we also investigated MMIE training of these mod-
els using the full h5train00 set. The decision tree state clus-
tering process for quinphones includes questions regarding

� �
phone context and word-boundaries. The baseline quin-

phone system uses 9640 speech states and 16 Gaussians per
state to give 580 Gaussians per hour of training data.

The quinphone MMIE training used triphone-generated
word lattices, but, since the phone-marked lattices were re-
generated for the quinphone models, it was necessary to fur-
ther prune the word-lattices. The results of MMIE trained
quinphones on the eval97sub set are shown in Table 7. Note
that these experiments, unlike all previous ones reported
here, include pronunciation probabilities.

MMIE %WER
Iteration eval97sub

0 (MLE) 42.0
1 40.4
2 39.9
3 40.1

Table 7: Quinphone MMIE results on eval97sub. Pronunciation
probabilities were used.

As with the MMIE training runs discussed above, the
largest WER reduction (2.1% absolute) comes after two it-
erations of training. While MMIE training is still working
well, the reductions in error rate are not quite as large as for
the triphone models. This may be because of the extra prun-
ing required for the phone-marked lattices, or because there
are rather more HMM parameters to estimate.

Interaction with MLLR
All the above results used models that were not adapted to

the particular conversation side. Since model adaptation by
parameter transformation using maximum likelihood linear
regression (MLLR) [15, 6] is now a well-established tech-
nique, it is important to investigate if there is an interaction
between the MMIE trained models and transformation pa-
rameters estimated using MLE.



To measure MLLR adaptation performance, MMIE and
MLE models (both using CHE data weighting) were used in
a full-decode of the test data, i.e. not rescoring lattices, with
a 4-gram language model. The output from this first pass
was used to estimate a global speech MLLR (block-diagonal
mean and diagonal variance) transform. If enough data was
available a separate transform was also estimated for silence
models and the output from the respective non-adapted pass
was used for adaptation supervision. The adapted models
were then used for a second full-decode pass. The results of
these experiments are shown in Table 8.

Adaptation % WER eval98
MLE MMIE

None 44.6 42.5
MLLR 42.1 39.9

Table 8: Effect of MLLR on MLE and MMIE trained models.

The results show that the MMIE models are 2.1% abso-
lute better than the MLE models without MLLR, and 2.2%
better with MLLR. In this case, MLLR seems to work just
as well with MMIE trained models: a relatively small num-
ber of parameters are being estimated with MLLR and these
global transforms keep the Gaussians in the same “configu-
ration” as optimised by MMIE.

March 2000 CU-HTK Hub5 System
The MMIE triphone and quinphone models were included

in the March 2000 CU-HTK Hub5 evaluation system [11].
Although this system incorporates numerous changes com-
pared to that described in [10], the use of MMIE models in
the system gave the greatest benefit.

Initial lattices were generated using gender independent
MMIE triphone HMMs with a 54k vocabulary and a 4-gram
language model. Subsequent passes through the data used
MMIE triphones and quinphones as well as MLE gender-
dependent soft-tied [16] triphones and quinphones. All
model sets use pronunciation probabilities, iterative MLLR
adaptation combined with a global full-variance transform
[7]. The final system output for each model set was gener-
ated to minimise the expected word error rate via confusion
networks [17]. The output of the MMIE and MLE model
stages were combined via confusion network combination
[5] to give the final output.

On the eval98 data, this system gives an error rate of
35.0%, and on the March 2000 evaluation data (eval00)
25.4%, which was the lowest error rate obtained in the eval-
uation by a statistically significant margin.7

8. FURTHER INVESTIGATION OF THE MMIE
TRAINING SCHEME

In this section, the properties of the MMIE training
scheme used in Section 7 are investigated along a number
of variations. These include the effect of acoustic likelihood

7The eval00 test-set consistently yields much lower error rates than
eval98 across all recognition systems.

scaling on the number of confusable states; the use of the
exact-match and full-search lattice processing methods; the
effect of different values of the global constant

�
on opti-

misation and test-set performance; and a brief investigation
into a modified objective function.

Increased Confusion Data by Acoustic Model Scaling
To illustrate the effect of acoustic scaling (rather than lan-

guage model scaling) on the distribution of the posterior
probability of state-occupation, the average number of states
with a posterior probability greater than 0.01 was computed
for both the full-search and the exact-match lattice search
procedures. The results are shown in Table 9.

Search Scaling
Type Acoustic LM

num den num den
Full-search 3.54 8.16 1.43 1.63

Exact-match 1.78 5.58 1.26 1.45

Table 9: Average number of states with a posterior probability of
occupation greater than 0.01 with and without acoustic scaling.

As expected, acoustic likelihood scaling significantly
broadens the posterior probability distribution. It is also
noteworthy that the exact-match procedure reduces the num-
ber of confusable states quite markedly since models are not
computed outside the lattice arc Viterbi segmentation points.

Objective Function Optimisation and Generalisation
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Figure 1: MMIE criterion optimisation.

The increase in MMIE objective function and the corre-
sponding test-set error rate (eval97sub) were measured us-
ing both the full-search and exact-match schemes and also
several values of the global smoothing constant:

� & �
,�?& �

, and
�?& � �

,
	 v ��
 . The experiments used the 68

hour h5train00sub training setup with acoustic scaling. The
change in objective function as training proceeds is shown
in Figure 1 and the corresponding error rates in Figure 2.
While there is no consistent difference in WER between
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Figure 2: Error rates for several MMIE training variants.

full-search and exact-match, our implementation of exact-
match search ran significantly faster.

One problem with using
�����

is that over-training eas-
ily occurs, although the second iteration of MMIE train-
ing yields good results. Using a higher value of the global
smoothing constant

�
which further increases during train-

ing, such as
�����	��
�������

, results in the objective function
being optimised to a poorer final value, but with less danger
of over-training. However, the underlying problem is that
improving the objective function past a certain point causes
the test-set accuracy to deteriorate.

H-Criterion Objective Function
An alternative solution to over-training is to modify the

objective function. In particular, an interpolation of the
MMIE and MLE objective functions, which gives a type of
H-criterion [8], was examined. The function investigated
here was �

�������������! 
�
�#"�����$��

This objective function can be implemented simply by an
appropriate scaling of the MMIE numerator statistics. The
exact-match method was used on the h5train00sub training
set with

�%�&�
. Evaluation using the eval97sub test-set

showed that the error-rate converged as the objective func-
tion was optimised to yield 43.7% error on the 5th iteration.

While these models gave the same test-set accuracy as
conventional MMIE training, it was noted that the model pa-
rameters had changed rather less from the MLE parameter
values than the pure MMIE ones with the same accuracy:
90% of means were within 0.1 standard deviations of the
MLE values, compared to 90% within 0.25 standard devia-
tions for similarly performing pure MMIE models.

9. DISCUSSION & CONCLUSIONS
This paper has discussed the use of discriminative train-

ing for large vocabulary HMM-based speech recognition for
a training set size and level of task difficulty not previously
attempted. It has been shown that significant reductions in

word error rates can be obtained for the transcription of con-
versational telephone speech.

The MMIE objective function was reviewed and the two
key issues for its application to large vocabulary tasks were
discussed: the efficiency of objective function optimisation
and generalisation to test data.

The Extended Baum Welch algorithm, with Gaussian spe-
cific ' constants, was used and it was shown that two itera-
tions of updating were sufficient to obtain good performance
over a large range of data set sizes and model types. Fur-
thermore, a novel updating formula for the mixture weight
parameters was introduced.

The use of a weakened language model (a unigram), and,
more importantly, acoustic likelihood scaling were investi-
gated as methods of increasing the amount of relevant con-
fusable data during MMIE training. Both these techniques
improve generalisation and allow better performance to be
obtained with MMIE training using more complex models.
Therefore, in contrast to previously held beliefs, it is pos-
sible to use MMIE training for the most challenging large
vocabulary tasks to reduce error rates over the best MLE
models, and not just provide good performance with a re-
duced number of parameters.

A lattice-based approach to calculating the statistics re-
lated to the objective function denominator was used, and
two specific implementations of lattice search were de-
scribed. Both methods, unlike previous work on lattice-
based discriminative training algorithms, perform a full
forward-backward pass at the model level. However they
differ in the constraints used at the model boundaries and
were found to be comparable in error rate, although the
exact-match scheme has a lower computational cost.

While MMIE training is effective, it is clear that over-
training can easily occur. One possible solution is to mod-
ify the objective function to aid generalisation directly. One
method for doing this is to use an interpolation of the MMIE
and MLE objective functions and this seems to be effective.
We intend to further investigate other modifications to im-
prove generalisation performance.

While this paper has concentrated on the MMIE objective
function, much of what has been discussed can be directly
applied to other objective functions. A general formulation
to lattice-based discriminative training was proposed in [26],
which discuses how other measures, such as MCE, can be
used in the lattice framework.

The MMIE training scheme was applied to transcription
of Hub5 data for training sets up to 265 hours in size for
both triphone and quinphone models and resulted in a 2-3%
absolute reduction in word error rate. The trained MMIE tri-
phone and quinphone HMMs were used in the March 2000
CU-HTK Hub5 system which had the lowest error rate in
the evaluation by a statistically significant margin. While the
method is still very computationally expensive, it is now be-
coming feasible to investigate MMIE training on this scale.
We believe that there is much exciting research on large-
scale discriminative training still to be done.



ACKNOWLEDGMENTS
This work is in part supported by a grant from GCHQ.

Dan Povey holds a studentship from the Schiff Foundation.

REFERENCES
[1] L.R. Bahl, P.F. Brown, P.V. de Souza & R.L. Mercer

(1986). Maximum Mutual Information Estimation of Hid-
den Markov Model Parameters for Speech Recognition, Proc.
ICASSP’86, pp. 49–52, Tokyo.

[2] W. Chou, C.-H. Lee & B.-H. Juang (1993). Minimum Er-
ror Rate Training Based on N-Best String Models. Proc.
ICASSP’93, pp. 652-655, Minneapolis.

[3] Y.L. Chow (1990). Maximum Mutual Information Estima-
tion of HMM Parameters for Continuous Speech Recogni-
tion Using the N-Best Algorithm. Proc. ICASSP’90, Albu-
querque.

[4] G. Evermann & P.C. Woodland (2000). Large Vocabulary
Decoding and Confidence Estimation using Word Posterior
Probabilities. Proc. ICASSP’2000, Istanbul.

[5] G. Evermann & P.C. Woodland (2000). Posterior Probability
Decoding, Confidence Estimation and System Combination.
Proc. Speech Transcription Workshop, College Park.

[6] M.J.F. Gales & P.C. Woodland (1996). Mean and Variance
Adaptation Within the MLLR Framework. Computer Speech
& Language, Vol. 10, pp. 249–264.

[7] M.J.F. Gales (1998). Maximum Likelihood Linear Transfor-
mations for HMM-Based Speech Recognition. Computer
Speech & Language, Vol. 12, pp. 75-98.

[8] P.S. Gopalakrishnan, D. Kanevsky, A. Nádas, D. Nahamoo &
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(1991). An Inequality for Rational Functions with Applica-
tions to Some Statistical Estimation Problems. IEEE Trans.
Information Theory, Vol. 37, pp. 107–113.

[10] T. Hain, P.C. Woodland, T.R. Niesler & E.W.D. Whittaker
(1999). The 1998 HTK System for Transcription of Con-
versational Telephone Speech. Proc. ICASSP’99, pp. 57–60,
Phoenix.

[11] T. Hain, P.C. Woodland, G. Evermann & D. Povey (2000).
The CU-HTK March 2000 Hub5E Transcription System.
Proc. Speech Transcription Workshop, College Park.

[12] M.M. Hochberg, L.T. Niles, J.T. Foote & H.F. Silverman
(1991). Hidden Markov Model/Neural Network Training
Techniques for Connected Alpha-Digit Speech Recognition.
Proc. ICASSP’91, pp. 109–112, Toronto.

[13] S. Kapadia, V. Valtchev & S.J. Young (1993). MMI Train-
ing for Continuous Parameter Recognition of the TIMIT
Database. Proc. ICASSP’93, pp. 491–494, Minneapolis.

[14] S. Kapadia (1998). Discriminative Training of Hidden
Markov Models. Ph.D. Thesis, Cambridge University Engi-
neering Dept.

[15] C.J. Leggetter & P.C. Woodland (1995). Maximum Likeli-
hood Linear Regression for Speaker Adaptation of Continu-
ous Density HMMs. Computer Speech & Language, Vol. 9,
pp.171–186.

[16] X. Luo & F. Jelinek (1999). Probabilistic Classification
of HMM States for Large Vocabulary Continuous Speech
Recognition Proc. ICASSP’99, pp. 2044–2047, Phoenix.

[17] L. Mangu, E. Brill & A. Stolcke (1999). Finding Consen-
sus Among Words: Lattice-Based Word Error Minimization.
Proc. Eurospeech’99, pp. 495–498, Budapest.

[18] B. Merialdo (1988). Phonetic Recognition Using Hidden
Markov Models and Maximum Mutual Information Training.
Proc. ICASSP’88, pp. 111–114, New York.
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