
FMPE: DISCRIMINATIVELY TRAINED FEATURES FOR SPEECH RECOGNITION

Daniel Povey, Brian Kingsbury, Lidia Mangu, George Saon, Hagen Soltau, Geoffrey Zweig ∗

IBM T.J. Watson Research Center, NY; {dpovey,bedk,mangu,gsaon,hsoltau,gzweig}@us.ibm.com

ABSTRACT
MPE (Minimum Phone Error) is a previously introduced
technique for discriminative training of HMM parameters.
fMPE applies the same objective function to the features,
transforming the data with a kernel-like method and training
millions of parameters, comparable to the size of the acous-
tic model. Despite the large number of parameters, fMPE is
robust to over-training. The method is to train a matrix pro-
jecting from posteriors of Gaussians to a normal size feature
space, and then to add the projected features to normal fea-
tures such as PLP. The matrix is trained from a zero start
using a linear method. Sparsity of posteriors ensures speed
in both training and test time. The basic technique gives
similar improvements to MPE (around 10% relative); MPE
on top of fMPE results in error rates up to 6.5% relative bet-
ter than MPE alone, or more if multiple layers of transform
are trained.

1. INTRODUCTION

This article introduces fMPE, a method of discriminatively
training features. The MPE objective function is reviewed
in Section 2; Sections 3 and 4 describe fMPE; Section 5
discusses some issues relating to its use. Datasets and ex-
perimental conditions are described in Section 6, and ex-
perimental results are presented in Sections 7, 8, 9 and 10.
Conclusions are given in Section 11.

2. MINIMUM PHONE ERROR (MPE)

The Minimum Phone Error (MPE) objective function for
discriminative training of acoustic models was previously
described in [1, 2]. The basic notion is the same as other
discriminative objective functions such as MMI, i.e. train-
ing the acoustic parameters by forcing the acoustic model to
recognize the training data correctly.

The MPE criterion is an average of the transcription ac-
curacies of all possible sentences s, weighted by the proba-
bility of s given the model:

FMPE(λ) =
∑R

r=1

∑

s P κ
λ (s|Or)A(s, sr) (1)

∗Thanks to Michiel Bacchiani, Upendra Chaudhari, Olivier Siohan and
Bhuvana Ramabhadran for help with the Callcenter, Malach and Broadcast
News experiments.

where P κ
λ (s|Or) is defined as the scaled posterior sentence

probability pλ(Or |s)
κP (s)κ

P

u
pλ(Or|u)κP (u)κ of the hypothesized sentence

s, where λ is the model parameters andOr the r’th sequence
of acoustic data.

The function A(s, sr) is a “raw phone accuracy” of s
given sr, which equals the number of phones in the refer-
ence transcription sr for file r, minus the number of phone
errors.

3. FMPE

3.1. Overview of fMPE

fMPE is a form of discriminative training that optimizes the
same objective function as MPE, but does so by modifying
the features. The basic transformation is:

yt = xt + Mht, (2)

where xt are the original features on time t and yt the mod-
ified features. ht are high dimensional features calculated
at each frame t, which may be a function of the original
features xt. These are projected down with the matrix M.
If very high dimensions are used, it is important that the
features ht are sparse, i.e. very few of the elements of the
vector are nonzero on each time frame. This means that
very few of the rows of M have to be accessed on each time
frame. The reason for adding the original features xt is that
it solves the problem of initializing the training algorithm
with something reasonable. The matrix M can be trained
from a zero start.

3.2. High-dimensional feature generation

The first stage of fMPE is to transform the features into a
very high dimensional space. This is done as follows for
most experiments described here. A set of Gaussians is cre-
ated by likelihood-based clustering of the Gaussians in the
acoustic model to an appropriate size (up to 100,000 in ex-
periments reported here). On each frame, the Gaussian like-
lihoods are evaluated with no priors, and a vector of pos-
teriors ht is formed. This can be done very quickly (e.g.
less than 0.1xRT) by further clustering the Gaussians to, say,
2000 cluster centers and only evaluating the 100 most likely

clusters based on the cluster-center’s likelihood [3]. A key
feature is that the vector ht is sparse, i.e. only certain el-
ements on each time t differ significantly from zero; this
greatly speeds up the computation.

3.3. Acoustic context expansion

The vector is further expanded with left and right acoustic
context. The following is a typical configuration used: If the
central (current) frame is at position 0, vectors are appended
which are the average of the posterior vector at positions 1
and 2, at positions 3, 4 and 5, and at positions 6, 7, 8 and
9. The same is done to the left (positions -1 and -2, etc) so
that the final vector is of size 700,000 if there were 100,000
Gaussians. Sparse vector routines are used for speed.

3.4. Training the matrix

The matrix is trained by linear methods, because in such
high dimensions accumulating squared statistics would be
impractical. The update on each iteration is:

Mij := Mij + νij

∂F

∂Mij

, (3)

i.e. gradient descent where the parameter-specific learning
rates are:

νij =
σi

E(pij + nij)
, (4)

where pij and nij (see below) are the sum over time of
the positive and negative contributions towards ∂F

∂Mij
, E is

a constant that controls the overall learning rate and σi is
the average standard deviation of Gaussians in the current
HMM set in that dimension. Since ∂F

∂Mij
= pij − nij , the

most each Mij can change is 1/E standard deviations, and
the most any given feature element yti can change is n/E
standard deviations, where n is the number of acoustic con-
texts by which the vector Ht has been expanded (e.g. n =7).

It follows from Equation 2 that

∂F

∂Mij

=

T
∑

t=1

∂F

∂yti

htj , (5)

where htj is the j’th dimension of ht and yti is the i’th di-
mension of the transformed feature vector yt. The differ-
ential ∂F

∂Mij
is broken into the positive and negative parts

needed to set the learning rate in Equation 4:

pij =
∑T

t=1 max(∂F
∂yti

htj , 0) (6)

nij =
∑T

t=1 max(− ∂F
∂yti

htj , 0). (7)

3.5. Smoothing of update

To prevent over-training of parameters that cannot be esti-
mated robustly, a modification is made as follows, which
amounts to using a slower learning rate for the elements that
have sparse training data. Let the “count” cij be

∑T
t=1 htj ,

which is similar to the number of nonzero points available in
estimating the differential ∂F

∂Mij
. This formula only makes

sense if the high dimensional features htj are generally ei-
ther zero or not far from one; another way to set cij is
(
∑T

t=1 |dij(t)|)
2/

∑T
t=1 dij(t)

2 where dij(t) = ∂F
∂yti

htj ,
which is the number of points that would have the same
expected ratio of squared sum of absolute values to sum-
of-squares if it were Gaussian distributed with zero mean.
These approaches gives similar counts. The count cij is used
to work out the typical magnitude of a nonzero differential
which is (pij + nij)/cij . This is used to “pad” the differen-
tials pij and nij with a number τ of typical imaginary obser-
vations prior to update, so nij := nij +0.5τ(pij +nij)/cij ,
and pij := pij + 0.5τ(pij + nij)/cij . This slows down
the learning rate (Equation 4) for parameters that have too
few observations. Smoothing may slightly improve results,
on the order of 0.1% absolute; generally this is done with
τ ' 100.

Some experiments reported here pad the two statistics
with imaginary counts that are not equal, but have the same
ratio as the overall statistics for the relevant cluster of Gaus-
sians. However this does not make any clear difference to
the WER so it is not described further.

4. CALCULATING THE DIFFERENTIAL

4.1. Direct differential

As mentioned in Section 3.4, a key quantity in fMPE train-
ing is ∂F

∂yti
which is the differential of the MPE function

w.r.t. the i’th dimension of the transformed feature vector
on time t.

Directly differentiating the MPE objective function can
be done via the following equation. Defining the log likeli-
hood of Gaussian m of state s on time t as lsmt,

∂F
∂yti

direct
=

∑S
s=1

∑Ms

m=1
∂F

∂lsmt

∂lsmt

∂yti
. (8)

The first factor ∂F
∂lsmt

is already calculated in normal MPE

training [1, 2]; it equals
∑Q

q=1 κγMPE
q γqsm(t) where κ is

the probability scale, κγMPE
q is the differential of F w.r.t.

the log likelihood of the q’th phone arc, and γqsm(t) is the
Gaussian occupation probability within the phone arc. The
second factor ∂lsmt

∂yti
equals µsmi−yti

σ2

smi

. Note that the posi-

tive and negative γMPE
q (and the positive and negative lsmt)

should sum to zero on each time t, and where for numerical
or pruning reasons they did not they were re-balanced, for
experiments reported here.

4.2. Indirect differential

Equation 8 is unsatisfactory because it takes no account of
the fact that the same features are used to train as well as test
the model, and the features will affect the HMM parameters.
When using Equation 8 for the differential, it was found that
much of the WER improvement was lost as soon as the same
features were used to to retrain the models (with ML train-
ing). For this reason, the differential is augmented with a
term that reflects changes in the models. The statistics used
for normal MPE training are used to calculate ∂F

∂µsmi
and

∂F
∂σ2

smi

, i.e. the differential of the objective function w.r.t. the
model means and variances (see Section 4.3). This allows
us to calculate the part of the differential that is mediated by
changes in the Gaussians:

∂F
∂yti

indirect
= (9)

∑S
s=1

∑Ms

m=1
γsm(t)

γsm

(

∂F
∂µsmi

+ 2 ∂F
∂σ2

smi

(yti − µsmi)
)

where γsm(t) is the ML occupation probability as used in
standard forward-backward training; γsm is the same thing
summed over all the training data. The final differential that
is used is:

∂F
∂yti

= ∂F
∂yti

direct
+ ∂F

∂yti

indirect
. (10)

Note that Equation 9 is based on assumptions that are not
quite met. The fMPE differential of Equation 8 and the
MPE differentials ∂F

∂µsmi
etc are the differentials around the

current acoustic parameters and features. The current acous-
tic parameters λ were generated from statistics obtained by
aligning previous models, say λprev. Ideally, Equation 9
should refer to these previously obtained occupation prob-
abilities γsm(t)prev and γprev

sm . For convenience this is not
done.

4.3. Model parameter differentials

In order to calculate the indirect differential, the quantities
∂F

∂µsmi
and ∂F

∂σ2

smi

are are obtained from normal MPE statis-
tics [1, 2] as follows:

∂F
∂µsmi

= κ
σ2

smi

(

θnum
smi (O) − θden

smi(O) − µsmi(γ
num
sm − γden

sm)
)

,

(11)
where µsmi and σ2

smi are the mean and variance in the Gaus-
sians used for the alignment, and θnum

smi (O) and γnum
smi etc are

the sum-of-data and count MPE statistics.
For the variance, let us first define the quantities Snum

smi

and Sden
smi which are the variance of the numerator and de-

nominator statistics around the current mean, so e.g.

Snum
smi = (θnum

smi (O2)− 2θnum
smi (O)µsmi + γnum

sm µ2
smi)/γnum

sm ,
(12)

where θnum
smi (O2) are the sum-of-squared-data statistics. The

differential w.r.t the variance is then

∂F
∂σ2

smi

=
κγnum

sm

2 (Snum
smi σ−4

smi−σ−2
smi)−

κγden

sm

2 (Sden
smiσ

−4
smi−σ−2

smi).

(13)

4.4. Checks

A useful check that no implementation errors have been
made is that adding a small quantity to all the features in
some dimension should not affect the MPE objective func-
tion, as long as it is done in both training and test. This
implies that

∑T
t=1

∂F
∂yti

direct
+

∑T
t=1

∂F
∂yti

indirect
= 0, (14)

where the summation
∑T

t=1 is over all training data. The
two terms in the above equation generally cancel out to
within a margin of, say 1% of the absolute values of the
two terms. Discrepancies are due to the assumptions made
in Equation 9 not being met. A similar metric relating to
a linear scaling of each dimension can be more sensitive to
problems but should cancel to within a few percent:

∑T
t=1 yti

∂F
∂yti

direct
+

∑T
t=1 yti

∂F
∂yti

indirect
= 0. (15)

5. OVERVIEW AND GENERAL CONSIDERATIONS
IN FMPE TRAINING

5.1. Overview

Procedurally, each iteration of fMPE training involves three
passes over the data: one to accumulate normal MPE statis-
tics; a second to accumulate fMPE statistics (chiefly the
quantities nij and pij), and a third pass to do an ML update
with the newly transformed data. All three passes start with
the same HMMs; for simplicity, in these experiments the
third pass aligns with the newly transformed features rather
than doing single-pass retraining from the old to the new
features. Naturally, on the n + 1’th iteration the updated
HMMs from the n’th iteration will be used to align the data
and the first two passes will use the transformed features
from the n’th iteration’s update. Convergence speed is sim-
ilar to MPE, so three or four iterations may give most of the
improvement. However, fMPE seems to be more robust to
overtraining, i.e. the error rate does not tend to start rising
after after a few iterations.

5.2. Dimension of high-dimensional features

Experiments on Callcenter data suggest that it is probably
good to use as high a dimension as possible until there is
insufficient data for each parameter and data-learning be-
comes an issue. This is why the very high dimension of

100,000× 7 contexts was used in CTS experiments reported
here. The overhead in testing is very small - about 0.1 to
0.2xRT. Much of the improvement in WER can be obtained
with a smaller dimension and no acoustic context. Early
experiments used state posteriors rather than Gaussian pos-
teriors; no clear evidence is available as to their relative use-
fulness but Gaussian posteriors are more convenient.

5.3. Offset features

A different kind of high-dimensional feature that has proved
useful is the ’offset’ feature. This is obtained by including
in the feature vector the offset of the observed feature vec-
tor from each Gaussian’s mean, scaled by its posterior. If
there are N diagonal Gaussians over d-dimensional input
features, the vector ht will have dimension N(d + 1). Each
Gaussian n has a posterior 0 ≤ pt(n) ≤ 1 on time t. The
offset features will be, for each dimension 1 ≤ d ≤ D,
pt(n)xt(d)−µn(d)

σn(d) , where µn(d) and σn(d) are the mean and
standard deviation of the n’th Gaussian (the normalization is
to ensure that the offset features all have zero mean and ap-
proximately the same dynamic range). The d + 1′th feature
for each Gaussian is the posterior itself scaled by a constant:
Spt(n), where the scaling factor S is 5.0 for experiments re-
ported here. This is to prevent the posteriors being swamped
by the much larger number of offsets; it has the effect of giv-
ing the posteriors a faster learning rate. With offset features,
it is especially important for efficiency reasons to prune the
Gaussian posteriors heavily to keep the number of nonzero
features few in number. For experiments reported here, only
the top two posteriors are kept (and renormalized to sum to
one).

5.4. Typical criterion improvements

In fMPE, the improvement in MPE criterion (expressed rel-
ative to the number of phones in the correct transcription)
tends to be smaller than in MPE training: around 2-3% ab-
solute, e.g. rising from 0.70 to 0.725, compared with per-
haps 6% in MPE training. However the observed WER im-
provements on test data are not much smaller than the crite-
rion improvement (say, around 2%); also in fMPE training
a greater proportion of the training data criterion improve-
ment is seen when the MPE criterion is measured on unseen
data, as compared with MPE training. Note that the MPE
criterion is a kind of smoothed error rate so the comparison
with WER makes sense.

The predicted MPE criterion improvement calculated
from the gradient ∂F

∂Mij
and the change in each Mij tends

on the first iteration to be around 0.05 to 0.10 after divid-
ing by the number of phones in the reference transcript; this
corresponds to around 6% to 12% predicted improvement in
phone error rate. This predicted improvement may decrease
by as much as half on the second iteration and will decrease

further thereafter. The observed improvement in the MPE
objective function tends to be in the region of half the pre-
dicted improvement.

5.5. Suggested learning rates

The value of the learning rate E is one of the more critical
parameters. The optimal value of E will tend to increase as
the number of contexts increases because the summed value
of the elements of ht is increasing. It is suggested to fix
an amount of predicted MPE criterion improvement to aim
for on the first iteration (say 0.06) and calculate the E value
corresponding to this; and to use the same E value for subse-
quent iterations. One measure of whether the learning rate
is too fast or too slow is the number of matrix parameters
Mij that change sign. For the best values of E (in terms
of WER on test data), the proportion of the parameters Mij

that changes sign seems to be around 10-15% on the second
iteration, decreasing to around 5-10% on subsequent itera-
tions.

5.6. Testing for data learning

This section demonstrates a convenient way to test how
much of the improvement in the MPE criterion derives from
data learning and how much should generalize to other data.
Note that this is for interest only and is not necessary in or-
der to implement fMPE.

The update procedure improves the MPE criterion on the
training data; only some of this improvement in criterion
would generalize to unseen data. Determining how much
of the improvement is due to data learning is easy given
the nature of the update equations. If the basic update de-
scribed above is used (no τ involved), the learning rule for
each parameter is gradient descent for each parameter with
the learning rate more or less inversely proportional to the
amount of training data available.

If the training data is imagined divided up into blocks of
a certain size, and each block contributes a differential w.r.t.
each parameter that is some common value plus a random
block-specific term that is drawn from a zero-mean, i.i.d.
distribution, and if a subset of the differentials from these
blocks are used to train, it can be shown fairly easily that
the expected criterion improvement due to data-learning is
constant independent of the number of blocks used, but the
“good” improvement rises linearly.

Let us suppose that the differential from each block
b = 1 . . . B equals a constant amount k (the expected dif-
ferential for that block size) plus a random amount rb. If
the learning rate is l/B, the improvement in criterion is
(l/B)(

∑

b=1...B k + rb)
2. rb is drawn from an i.i.d. distri-

bution with mean zero, and it works out that the expected
improvement in criterion is l(v + Bk2) , where v is the
variance of the distribution from which the rb are drawn. So

the expected criterion improvement lv due to overtraining is
independent of the size of the training dataset, whereas the
real improvement lBk2 rises linearly.

This leads to a rule exemplified as follows: If the up-
date is done with 0.2 the amount of data and the improve-
ment in criterion is 0.37 what it was before, it works out that
the proportion of the original improvement that was due to
overtraining is 0.37−0.2

1−0.2 = 0.21. The predicted proportion
of improvement due to overtraining can be as high as 0.5.

Note that these calculations refer to the absolute MPE
criterion, not normalized by the number of correct phones.

5.7. Typical learning rates, and acoustic scaling

When early fMPE experiments were performed (including
those for systems submitted for the RT-04 evaluation), it was
believed that there was a danger that the fMPE transform
might attempt to generally strengthen or weaken the acoustic
model relative to the LM. In order to prevent this from hap-
pening, the differential of the MPE criterion w.r.t a scaling
of all the acoustic likelihoods was calculated and the acous-
tic and LM weights were tuned until this was close to zero.
This explains why there is a lot of variation in the acous-
tic and language model weights used (Table 6.3). Further
experiments have shown that this consideration is not im-
portant and simply using the same acoustic weight as MPE
(e.g. κ = 0.1) and the same language model weight can give
better results. A more complete investigaton of the effect of
the acoustic weight on fMPE has not been attempted.

6. EXPERIMENTAL CONDITIONS

6.1. Datasets

Experiments are reported here on four datasets: CTS (con-
versational telephone speech), Broadcast News, Callcenter
and Malach. For CTS, the training data was 2300 hours of
Switchboard, Call Home English, and (mostly) Fisher data.
The amount of data remaining after segmentation, and re-
moving segments containing only one word or OOV’s or
which have alignment problems, was around 2100 hours.
The Broadcast News training data was the 140 hours of
fully transcribed data from 1996 and 1997; the length was
133 hours after segmentation and cleaning. Callcenter data
was data recorded from an internal IBM technical call cen-
ter; the amount was 300h of data (raw), or 200 (segmented
and cleaned). The Malach data consists of transcriptions of
testimonies of Holocaust survivors, collected by the Shoah
Foundation. This data mostly consists of heavily accented
speech by elderly speakers, leading to high error rates. The
length of the training data was 300h (raw), and only 95h
after cleaning because of problems with the transcripts.

Results on the CTS system are reported here on the RT-
03 test set. Broadcast News results are reported on the

Features
CTS(SI) PLP+LDA+MLLT, 40dim
CTS(SD) PLP+LDA+MLLT, 39dim
Callcenter(SI) PLP+LDA+MLLT, 40dim
Malach(SI) MFCC+LDA+MLLT, 60dim
Malach(SD) MFCC+LDA+MLLT, 60dim
Broadcast News MFCC+LDA+MLLT, 60dim

Adaptation
CTS(SI) CMS+CVN (per-side)
CTS(SD) . . . +VTLN+fMLLR
Callcenter(SI) CMS (per-conversation)
Malach(SI) CMS (per-segment)
Malach(SD) . . . +VTLN+fMLLR
Broadcast News CMS (per-cluster)

#States #Gauss Phn context
CTS(SI) 8K 150K 5-phone xwrd
CTS(SD) 22K 850K 7-phone xwrd
Callcenter(SI) 4K 97K 11-phn left-xwrd
Malach(SI) 4K 89K 3-phone xwrd
Malach(SD) 4K 80K 3-phone xwrd
Broadcast News 8K 128K 3-phone xwrd

Table 1. System setups: features, adaptation etc.

eval97 test set (3 hours). Callcenter results are reported on 6
hours of test data from the same source as the training data.
Malach results are reported on a test set consisting of 1 hour
of interviews (this is referred to elsewhere as “test set 2”).

6.2. Baseline system setups

Table 6.2 gives details of the system setups for the various
systems on which results are reported. Unless otherwise
stated, MPE was done with an acoustic weight of 0.1, an
LM weight of 1.9 (i.e 19 times the acoustic weight) and
E=2.0. The setup for MPE is largely as described in [1];
however a fourth set of statistics (corresponding to the de-
nominator statistics in MMI training) is also accumulated
so that I-smoothing can back off to an MMI rather than an
ML estimate. Unless otherwise stated, lattices are gener-
ated with either a unigram or highly pruned bigram language
model. In some experiments, the statistics for MPE training
are averaged over several acoustic and LM scales close to
the baseline values of 0.1 and 1.9, e.g. in adapted exper-
iments on CTS MPE experiments used scales of 0.10 and
0.16 (acoustic), and 1.0 and 1.6 (LM); four combinations.
After each iteration of MPE udpate, variances are floored
to the 20th percentile of the cumulative distribution of vari-
ances in each dimension [2].

Acwt LMwt #Gauss #cxts E
CTS(SI) 0.15 1.25 100K 5 0.96
CTS(SD) 0.1 1.25 64K 7 1.44
Callctr 0.175 1.2 32K 7,9 1.44,1.66
Mal(SI) 0.1 1.9 32K 9 1.66
Mal(SD) 0.1 1.9 32K 9 2.0
BN(SI) 0.1 1.0 750 9 n/a

Table 2. fMPE training setups

0 2 4 6
26

27

28

29

30

31

ITERATION

W
E

R

MPE
fMPE
fMPE+MPE

(a) CTS SI

0 2 4 6
19

20

21

22

23

ITERATION

W
E

R

MPE
fMPE
fMPE+MPE

(b) CTS Adapted

Fig. 1. MPE and fMPE results on CTS

6.3. fMPE system setups

Table 6.3 shows the settings of various fMPE-related param-
eters for the various systems trained. These are only for the
’primary’ fMPE experiments; contrasting results with dif-
ferent settings are also presented. The ’#Gauss’ column is
the number of Gaussians evaluated to obtain the high di-
mensional features, and not the number of Gaussians in the
models. The low number of Gaussians for the BN system
reflects the fact that only ’offset’ features were used (see
Sections 5.3 and 9).

The differing fMPE setups do not result from tuning to
different conditions but reflect the fact that what was con-
sidered the “best” setup was in a state of flux.

7. CONVERSATIONAL TELEPHONE SPEECH
(CTS) EXPERIMENTS

In Figure 1(a) and (b), results for MPE training and fMPE
followed by MPE are shown for CTS in both SI and adapted
conditions. These experiments were done in preparation for
IBM’s submission to the NIST RT-04 (Rich Transcription
2004) evaluation [4]. Testing is on RT-03. The poorer re-
sults on the SI task may be explained by the fact that in
the SI setup, only 1/5 of the training data was used to train
the fMPE transform; and because of poorer settings of the
acoustic weight and number of contexts. For the adapted
system, the final fMPE+MPE number, at 19.1%, is better by
1.3% than MPE alone; the corresponding improvement is
1.0% for the SI system.

0 2 4 6 8
36

37

38

39

40

41

42

ITERATION

W
E

R

MPE
fMPE
fMPE+MPE

(a) Basic Experiments

0 1 2 3 4
37

38

39

40

41

42

ITERATION

W
E

R

fMPE
fMPE9c
fMPE9c0.1

(b) Further tuning

0 2 4 6 8 10
34

36

38

40

42

ITERATION

W
E

R

MPE
fMPE9c0.1
fMPEoff
fMPEoff+cxt

(c) Testing offset features

Fig. 2. MPE and fMPE results on Callcenter data

For the RT-04 evaluation, a system with 0.4% better
WER than the final adapted fMPE+MPE number was ob-
tained. To do this, the fMPE features were used to train
from scratch a small 5-phone context system. Then, a sec-
ond layer of fMPE transform (“iterated fMPE”) was trained
on the small system using 1/4 the data, with 25K Gaussians
× 7 contexts. This doubly transformed data was used to fur-
ther train the original 7-phone context fMPE models (20.2%
→ 19.4%), after which MPE training was done (→ 18.7%).
This is 1.7% better than the best models with MPE alone.
The final transcriptions submitted included other features
such as cross-adaptation, MLLR, LM rescoring and consen-
sus. The 10xRT system had 13.0% WER on Dev-04, and
16.1% on RT-03 with 12.4% on the Fisher portion only.

8. CALLCENTER EXPERIMENTS

Figure 2(a) shows fMPE and MPE experiments on data
recorded from an IBM computer support call center. No
adaptation is used. The basic fMPE+MPE results on call-
center data are an impressive 5.2% better than the ML base-
line and 1.8% better than MPE alone. Figure 2(b) shows fur-
ther tuning of the fMPE setup. fMPE9c is with nine rather
than seven acoustic contexts, which are more compact than
the original seven contexts and are the averages of sets of
frames (0), (1), (2,3), (4,5), (6,7,8), (-1) etc. (The original
seven contexts started as (0), (1,2), (3,4,5) etc.). fMPE9c0.1
changes the acoustic and LM weight from 0.175 and 1.2, to
be the same as the normal MPE acoustic and LM weights,
i.e. 0.1 and 1.9. The lowered acoustic weight probably leads

to more robust statistics and better generalization to unseen
data.

Figure 2(c) shows some further improved results with
so-called ’offset’ features, as described above in Section 5.3.
From top to bottom, the lines are: baseline MPE, tuned
’vanilla’ fMPE (fMPE9c0.1), ’offset’ fMPE (fMPEoff), and
’offset’ fMPE with training of the context expansion (fMPE-
off+cxt). The ’offset’ fMPE features (Section 5.3) also use
nine contexts, and use E=9 and only 1024 Gaussians; the
number of parameters is roughly the same as before because
each Gaussian now leads to 41 times as many parameters in
the matrix.

The bottom plot (fMPEoff+cxt) shows results obtained
with offset features but when the context expansion is also
trained. This gives more than 6% absolute improvement
over the ML baseline. Briefly, the setup is as follows. It
requires a rearrangement of the calculation for efficiency,
and two layers of projection from high dimensional features
down to dimension d, after which the original features are
added. First, the unexpanded posteriors are multiplied by a
matrix to be trained that has 9d columns (corresponding to
the 9 contexts). Thus, for the current system with basic fea-
tures of size 1024×41 ' 42K, M is of size 42K×9d rather
than (9×42K)×d as it would be with the previous method
of context expansion. The feature vector of size 9d is then
spliced together across ± 40 frames and collapsed down to
size d by a projection which is initialized to have the same
effect as the normal context expansion described previously.
This ’collapsing’ projection is constrained so that a partic-
ular output dimension (i.e. from 1 . . . d) is a linear combi-
nation of the (2×40 + 1) × 9 contexts and frame-offsets of
only that same dimension. It thus has 9d(2×40 + 1) param-
eters. Both matrices are trained by gradient descent with
parameter-specific learning rates set as before, except that
the collapsing layer does not require the variance compen-
sation factor σi in the learning speed. The gradient descent
procedure is used with a modification to avoid instabilities as
follows: if more than 10% of the matrix parameters within
a set of meaningfully related matrix parameters (e.g. rows,
columns, etc.) change sign, the learning rate for that set is
reduced until the number changing sign equals 10%. This is
done from the second iteration, being irrelevant on the first.
For the third iteration and onwards, the percentage allowed
to change sign within any group is 5%. The E on the first
iteration is set so as to give a predetermined amount of crite-
rion improvement (e.g. 0.06 for the main matrix, 0.0075 for
the collapsing projection), and the same E used to initial-
ize the learning rates on subsequent iterations. Note that the
first iteration of training for the collapsing layer is the sec-
ond iteration of fMPE since its gradient on the first iteration
of fMPE will be zero.

0 2 4 6 8
19

20

21

22

23

24

ITERATION

W
E

R

MPE
fMPEoff+cxt
fMPEoff+cxt + MPE

Fig. 3. MPE and fMPE results on Broadcast News (eval97).

0 1 2 3
42

43

44

45

46

47

48

ITERATION

W
E

R

MPE
fMPE

(a) Speaker Independent

0 1 2 3 4 5
34

36

38

40

42

ITERATION

W
E

R

MPE
fMPE
fMPE+MPE

(b) Speaker Adapted

0 1 2 3 4
36

37

38

39

40

41

42

ITERATION
W

E
R

fMPE
fMPEoff

(c) Adapted, offset features

Fig. 4. MPE and fMPE results on Malach data

9. BROADCAST NEWS EXPERIMENTS

The best setup mentioned above for Callcenter experiments
in Figure 2(c), i.e. offset features and context expansion,
has also been tried on a Broadcast News training setup (Fig-
ure 3). fMPE+MPE gives about 1.6% improvement over
MPE alone. The setup will not be described in detail, but
note that the MPE baseline has 0.5% advantage over fMPE
because it combines statistics from two sets of lattices de-
rived from decoding with word-based and phone-based lan-
guage models, which the fMPE experiments do not.

10. MALACH EXPERIMENTS

The experiments reported in Figure 4 confirm the obser-
vation from Callcenter data that fMPE, if trained with the
right parameters, can give better results than MPE alone.
In this case, the difference is very dramatic. Speaker inde-
pendent experiments (Figure 4(a)) show 3.2% improvement

over MPE, and an enormous 5% absolute improvement over
the ML baseline. Figure 4(b) gives speaker adapted numbers
with a very impressive 3.0% improvement over MPE and
5.6% over the ML number. Figure 4(c) gives results on the
speaker adapted features, duplicating the fMPE experiment
with ’offset features’ shown in Figure 2(c). Note that this is
not the very best setup shown in Figure 2(c) which trained
the context expansion. The improvement over the normal
fMPE features is only 0.3%, but this is still useful because
’offset features’ are much more efficient to test with (fewer
Gaussians are evaluated).

11. CONCLUSION

fMPE is a novel and effective way to apply discriminative
training to features rather than models. It made a significant
contribution to IBM’s submission to the RT-04 evaluation,
and experiments on three other corpora demonstrate the ro-
bust nature of the improvements from fMPE and show that
further improvements can be obtained by tuning the training
setup.

fMPE is an extremely flexible framework, as shown for
instance by the success of ’offset’ features. This and other
improvements to the fMPE setup came too late to make it
into IBM’s RT-04 submission but would doubtless have im-
proved results. The feature-based nature of fMPE makes
possible things that are not possible with normal discrimina-
tive training, such as building a system on the new features
and iterating the process of fMPE training (as was done for
the evaluation system); or applying projections both before
and after adaptation.

12. REFERENCES

[1] D. Povey and P.C. Woodland, “Minimum Phone Er-
ror and I-smoothing for Improved Discriminative Train-
ing,” in ICASSP, 2002.

[2] D. Povey, Discriminative Training for Large Vocula-
bulary Speech Recognition, Ph.D. thesis, Cambridge
University, 2004.

[3] G. Saon, G. Zweig, B. Kingsbury, L. Mangu, and
U. Chaudhari, “An Architecture for Rapid Decoding
of Large Vocabulary Conversational Speech,” in Eu-
rospeech, 2002.

[4] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
and G. Zweig, “The IBM 2004 Conversational Tele-
phony System for Rich Transcription in EARS,” in
ICASSP, 2005.

