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Overview

e Maximum A Posteriori (MAP) is a standard adaptation scheme:
— increasing adaptation data tends to Maximum Likelihood estimation;
— referred to as ML-MAP is this talk.

e This paper describes two new discriminative MAP schemes:

— increasing adaptation data tends to discriminative estimation;
— maximum mutual information (MMI-MAP) and minimum phone error
(MPE-MAP) adaptation investigated.

e Two applications will be described:

— task port: from SwitchBoard to VoiceMail;
— gender dependent models: GD models for Broadcast News.
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Discriminative Training Criteria

e [ he discriminative criteria considered are:

— Maximum mutual information (MMI)

P (O|M,)" P(s)"
225 Px (O M)" P(s)"

fMMI()\) = log

— Minimum Phone Error (MPE)

_ > . DA(O|M )" P(s)*RawAccuracy(s)
25 PA(O|M)"P(s)"

RawAccuracy(s) is a measure of the number of phones accurately
transcribed.

FMPE()\)

e An alternative perspective on discriminative parameter estimation is described.

e Discriminative MAP schemes within this framework will be described.
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Strong/Weak Sense Auxiliary Functions
F( A A)
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e Strong Sense: used for standard EM - guaranteed convergence, requires
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e Weak Sense: applicable to MMI - yields Extended BW, requires
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Weak Sense Auxiliary functions for MMI

e MMI criterion may be expressed as (ignoring x for simplicity)
FHMYA) = log p(O|M™™) —log p(O|M ")
e The weak sense auxiliary function is
GMMI(\ R) = g™m(\, A) — G\, N) + G5 (A, N).
where G™™ (X, \) and G4¢"(\, \) are standard strong sense auxiliary functions.

e A smoothing term is added to improve stability - satisfies

0 sm A L
ﬁg (A, A) - =0

This ensures that final function is still a valid weak sense auxiliary function
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MMI Updates

e A possible smoothing function is
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e This yields the following MMI update for the means

o {enum ) . (gden } s Dj,aj
Hi = { num den} —|—D

Same as the standard Extended Baum-Welch update formulae.
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Incorporating Prior Information

e By definition a function is a weak sense auxiliary function of itself:

— a log-prior may be directly added to the weak sense auxiliary function.

e Consider using the ML estimate as the centre prior

logp(A;) = Q (vF, 71, 71 (™2 + o72), \j)

a(e)

num

where ,u;-nl =~
J

e This yields I-Smoothing

o L6m(0) — 61O} + Dy +
: {Wé}um_%den}ﬂLDj—FTf

— 7! determines influence of “prior” (ML estimate) on the final MMI estimate.

Eurospeech’'03 6



Povey, Gales, Kim & Woodland: Discriminative MAP Eurospeech’'03, Geneva

MMI-MAP

e For adaptation/porting the ML estimate may not be robust
— use a ML-MAP estimate as the prior

e Use count-smoothing ML-MAP with prior parameters (/i)

{00) 6O + Dy +
(=g + Dy + 7!

Fj

o1 (©) 471
where i;"" =~
J

e Two smoothing variables for MMI-MAP

— 7 determines how “close” the prior is to the ML estimate
— 71 determines how much the prior influences the final estimate.

e Similar form may be used for MPE-MAP.
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Switchboard to VoiceMail Porting

e Switchboard (source) - spontaneous telephone speech task

— 265 hours of training data, state-of-the-art system;

— gender-independent cross-word state clustered triphones;
— 6684 distinct states, 16 components per state;

— Systems trained using ML and MMI training.

e VoiceMail (target) - VoiceMail message data:

— voicemail messages collected by IBM employees;
— 28 hours of acoustic data (partitioned into 5 sets);
— 1.5 hour test set (1 hour taken from second release of training data).

e Standard Switchboard evaluation language model used.
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Switchboard to Voicemail Porting Results
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Hours of adaptation data

e WERs on Voicemail for varying amounts of adaptation data

e (MMI or ML) adapted with (MMI-MAP or ML-MAP)

e 4.5% relative improvement from MMI-MAP vs. ML-MAP (starting from MMI)

@ 30h adaptation data
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Gender Adaptation on Broadcast News

e 142 hours of training data (BNtrain97 and BNtrain98)

e Cross-word state clustered triphones;

e 0,976 distinct states, 16 components per state;

e Standard front end (Std), MF-PLP plus first and second-order deltas;

e Heteroscedastic linear discriminant analysis (HLDA):

— expand feature vector using third-order deltas;
— linear projection back to 39 dimensions.

e BNeval98 test set.
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BN Gender Adaptation Results

System WER (%)
Std HLDA
MLE-GI 19.6 17.9
MLE-GD 18.8 17.1
MMI-GI 17.0 —
MPE-GI 16.2 15.0
—MPE-MAP 15.7 14.5

e With ML system, gender adaptation (using ML-MAP) gave 0.8% absolute

e With MPE system, MPE-MAP gave 0.5% absolute

e MPE+MPE-MAP system 14.5% WER, vs. 17.1% for MLE (Both with HLDA)

e MPE with GD training gives 14.8%
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Summary

e Extended the MAP adaptation technique to be used with discriminative
training: both MMI and MPE

e Tends to discriminative training performance with infinite adaptation data
e Increases effectiveness of MAP with discriminatively-trained models

e Improvements over MLE-MAP for

— Task adaptation for Switchboard— Voicemail
— Creation of Broadcast News gender-dependent models
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