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ABSTRACT

This paper discusses the use of a secondary classifier to re-
weight the frame-based scores of a speaker recognition system ac-
cording to which region in feature space they belong. The score
mapping function is constructed to perform a likelihood ratio (LR)
correction of the original LR scores. This approach has the ability
to limit the effect of rogue model components and regions of fea-
ture space that may not be robust to different audio environments,
handset types or speakers.

Prior information available from tests on a development data set
can be used to determine a log-likelihood-ratio mapping function
that more appropriately weights each speech frame. The computa-
tional overhead for this approach in online mode is close to neg-
ligible for significant performance gains shown for the NIST 2004
Speaker Recognition Evaluation data.

1. INTRODUCTION

In adverse speaker recognition environments there is the problem
of accurately generalizing the speaker’s statistics based on informa-
tion available from usually a single audio session. Consequently,
a speaker model will not only represent statistics of the speaker,
but also the speech content, channel and handset influences, and
the audio environment. A number of techniques such as speaker
model synthesis and feature mapping [1, 2], Bayesian and other con-
strained channel adaptation [3], attempt to accommodate for chan-
nel variation artifacts. These successful techniques, encompass prior
information to enable a better generalization of the speaker’s char-
acteristics, but do not directly account for the importance of each
speech observation towards the global decision.

A technique is presented that is capable of effectively weighting
the importance of different observations in different regions of the
feature space. This weighting function may be combined in concert
with various forms of other techniques [1, 2, 3]. The score map-
ping approach utilizes development data to determine the weight-
ing for each partition according to the partition’s discriminative abil-
ity. The score mapping approach encompasses a secondary classi-
fier (or output mapping function) that transforms the hypothesized
single-session frame-based Log-Likelihood Ratios (LLRs) into log-
likelihood ratios that take into consideration intersession mismatch.

A framework is proposed, whereby if the feature space can
be decomposed into different partitions, and for each frame a log-
likelihood ratio or other figure of merit can be extracted, then the
scores can be mapped appropriately. Thus, a log-likelihood ratio
determined from statistics available from a single session can be
mapped to a log-likelihood ratio that is derived based on a gener-
alization of the reliability of each of the feature space regions. In
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Fig. 1. MAP adaptation for incomplete data. This example demon-
strates features that do not obey the identically distributed assump-
tion across audio sessions.

this paper, the framework is implemented in a simple form using an
adapted Gaussian Mixture Model (GMM) structure [4]. Here, each
mixture component of the GMM becomes a natural candidate for
partitioning the feature space.

In this work, a GMM based LLR architecture is adopted, where a
target speaker model is derived by adapting a Universal Background
Model (UBM) to data from a single session of a target speaker. A
UBM is a GMM with a large number of mixture components trained
on features from many speakers. The diagram in Figure 1 indi-
cates the scenario for when mixture component secondary classifier
rescoring becomes important. Figure 1 shows two mixture compo-
nent pairs, where the target speaker mixture components are adapted
towards the data from the first session. If all sessions following on
from this matched the distribution of the first session (identically dis-
tributed assumption), then there would be no mismatch introduced
and no need for rescoring. However, it is well known that there is
significant variation across sessions attributed to a number of identi-
fied artifacts. If it is such that this variation across speaker sessions
is significantly less for some mixture components than others, then
it would prove useful to weight them appropriately. In addition, the
figure shows that the second session of speech data from the same
target speaker may indicate that the mixture component pair in the
upper right is in the region of space that is more consistent across
multiple sessions.

In order to limit these effects a mapping function in the form
of a secondary classifier can be applied. The classifier models the
frame-based log-likelihood ratio scores derived from the target and
the background model. The LLR scores are modelled, for each cou-
pled Gaussian pair of the GMM, and for target speaker and impostor
speaker tests. The initial proposal involves modelling the score dis-
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tribution of the target and impostor scores using a Gaussian for each.
In order to better model the statistics using a Gaussian assumption,
this approach was further extended to model the scores as a function
of speaker model training soft counts.

This proposal saves on the need for complex training algorithms
because the mapping is applied a Gaussian pair at a time. It how-
ever does not take into consideration dependencies on other Gaus-
sian components but it also means that fewer classes and a smaller
quantity of data are required to train it.

Section 2 presents an approach for evaluating the importance of
each feature sub-space towards the overall classification decision.
Section 3 extends the work to include splines into the solution for
incorporating training parameter trends. This is followed by the sys-
tem description (Section 4) and the corresponding experiments re-
ported in Section 5. Section 6 concludes with the outcomes of this
work.

2. SECONDARY CLASSIFICATION

The purpose of the secondary classifier (or secondary scoring) is to
re-weight decisions made by the primary classifier (using the acous-
tic GMMs) that may not be made on information representative of
the speaker. One of a number of studies [5] indicated that not all
phonemes are equally discriminative, but in addition, this also im-
plies that not all areas of the acoustic feature space are equally dis-
criminative. The use of a secondary classifier presents a simple so-
lution for evaluating the weight of evidence from the speaker’s score
and the consideration of the discriminative power of each partitioned
region of the feature space. A mapping of this form is able to encom-
pass both the discriminative ability present for a region and the score
of the primary classifier in a joint manner.

The strength of the secondary classifier is that it can deempha-
size the contribution of unreliable mixture components and empha-
size discriminative regions. Let us consider a Gaussian Mixture
Model that has its component means adapted to the target speaker’s
speech from a background model. It is assumed that for each fea-
ture vector being tested, only the most significant scoring mixture
component from the background model and its corresponding target
model component will be evaluated. Given this mixture component
pair, the standard approach is to take the log-likelihood ratio of the
probability densities.

In performing this calculation, a number of assumptions are
made of which two are identified here. That is, the prior information
sustained by the background model, provided to the target model in
the adaptation process is representative of the target speaker prop-
erties. In addition, the scoring procedure then requires that either
the target or background probability density functions are identically
distributed.

Many of these problems are attributed to the lack of available
training data from each speaker to accurately adapt the background
model to the speaker. In addition, the speaker’s features across
sessions are not identically distributed with each other. Hence the
i.i.d. assumption would be a poor assumption. Under i.i.d. the log-
likelihood ratio would be an optimal test but under intersession mis-
match a modification can be introduced to limit its effect. If the mis-
match across speaker sessions is different for different feature space
regions, then the secondary classifier can incorporate and allow for
these mismatches in its log-likelihood ratio calculation.

For a coupled target and background model setup, a log-
likelihood ratio, �, for each frame of speech, �, may be extracted.
The LLR is approximated using the coupled Gaussian pair with the
highest scoring background mixture component. The log-likelihood
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(a) Histogram of Target LLRs
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(b) Histogram of Impostor LLRs

Fig. 2. Distribution of target and impostor log-likelihood ratio
scores for a single Gaussian pair across many speakers. The result
was determined over the entire NIST 2003 data set.

ratio may be calculated for a Gaussian pair with the same diagonal
covariance matrix �, a target mean vector of � and a background
component mean vector of ��.
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The score distribution for each Gaussian pair for target and im-
postor tests can now be modelled. For a series of target score ob-
servations, ������, and non-target scores, ������, the solution that
maximizes the likelihood of the models given the corresponding ob-
servations may be determined. Although this may be regarded as a
strong assumption, the first proposal will model the underlying score
distributions as single Gaussians. A common Gaussian variance con-
straint is also introduced to provide a monotonic scoring response.
The mapping amounts to a shift and scale applied to the LLR which
is specific to each Gaussian in the UBM. The shift and scale param-
eters are learned from held out data. An equal weight to both the
target (���) and non-target (���) classes is imposed. ie. the con-
straint that observations from both classes will weight the parameter
estimates with equal contributions. Here, ���� and ���� represent
the target and impostor score Gaussian means while ����� and �����
represent the corresponding Gaussian variances.
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For the constraint that each Gaussian has the same variance, the
tied variance (������) is the following result.

�
�
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�

�
������ � �

�

���� (3)

For an � component GMM, there will be � sets of the ���� ,
���� and ������ statistics giving a total of �� parameters. The pa-
rameter estimates for each Gaussian pair are used to estimate the
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Target and Non target Speaker Scores for a Single Gaussian Pair

Fig. 3. Distribution of log-likelihood ratio scores for a single Gaus-
sian pair for different Gaussian adaptation amounts. The means
and +/- one standard deviation for the target and impostor classes
are indicated. (The result is extracted from the NIST 2003 speaker
recognition database.)

corrected frame-based log-likelihood ratio. In contrast to the ba-
sic LLR approach (with the target adapted GMM versus the back-
ground model producing the log-likelihood ratio estimate) there is a
secondary classification level that corrects these single session LLR
scores. Let �� be the corrected log-likelihood ratio estimate. Equa-
tion 4 (acoustic space) is simply the one dimensional form of Equa-
tion 1 (score space).
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The underlying assumption is that the target and impostor score
distributions are Gaussian. By observing Figure 2, it is apparent that
this is not the case. In addition, the impostor histogram tends to
exhibit a slight negative skew while the target histogram presents a
marginally positive skew. The following section extends the solution
to lessen the impact of this issue.

3. SPLINE BASED MODELS

As identified in Figure 2 the component score distributions are not
Gaussian and are less Gaussian for impostor trials than target tri-
als. The benefit with using a single mean and variance pair for
each Gaussian is the lower complexity. It is proposed that the log-
likelihood ratio score distribution of the Gaussian pairs is also a func-
tion of the quantity of adaptation data for that mixture component,
which is also termed the mixture component soft count (see [4] for
background information). Figure 3 presents the target and impostor
frame based scores for a single mixture component for a range of
Gaussian component counts. For a single component count cross-
sectional slice, the target and impostor score distributions are more
Gaussian-like than the distributions that ignore the component count.
Thus, the score distributions would be better represented if the mean
and standard deviation of the target and impostor score distributions
are estimated as a function of the model component count.

One approach is to determine the trend of the distributions for
any particular count based on an underlying derived relation. A dif-
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Fig. 4. Spline based construction. The parameters ��� �� ����� rep-
resent the spline knot positions, intervals and polynomial functions
respectively.

ficulty is that there are typically a number of assumptions that must
be made, but there is the benefit of a terse number of parameters to
describe the statistical trend. Alternatively, a spline may be used to
describe the trend function of the mean and variance statistics of the
target and impostor class scores. Similar work [6] was performed
using splines to estimate the model response characteristics for the
purpose of utterance length compensation.

The advantage of a spline is that through the use of piecewise
polynomials (see Figure 4), it can approximate a parameter value
at any point within a bounded region. The spline can be trained
using a least squares criterion. The piecewise polynomial approx-
imation also produces a compact representation of the underlying
data. This work uses a single cubic spline with six intervals to de-
scribe the target speaker score mean (for a single Gaussian com-
ponent pair) as a function of the mixture component count for that
model. The same procedure is performed for calculating the im-
postor spline function. The variance trend spline function is deter-
mined by taking the square of the difference between each target or
impostor observation from the result determined by the correspond-
ing spline mean estimator. The tied variance spline is estimated di-
rectly from the (merged target and non-target) squared difference
statistics. Thus, there are three spline functions describing the statis-
tics for each Gaussian pair. These spline functions were determined
from frame scores with corresponding Gaussian counts between 1
and 10 samples. In testing, all frame scores were mapped according
to bounded Gaussian counts.

4. GMM SYSTEM DESCRIPTION

The speaker recognition system uses 38 dimensional features com-
prising 19 Mel-Frequency Cepstral Coefficients and their corre-
sponding deltas. Feature warping is also applied over a three sec-
ond window for all features to reduce the effect of slowly varying
additive noise and channel variability.

This GMM system is based on the work outlined in [4, 7]. The
basic concept is that a universal GMM is trained on a large quan-
tity of speech data from a wide variety of acoustic conditions. This
model serves as the background model from which all other speaker
models are adapted. In this work only the mixture component means
are adapted using a single iteration of the Expectation-Maximization
MAP algorithm. Once the speaker model is trained, speaker testing
is performed by calculating the expected frame-based log-likelihood
ratio between the target speaker and the universal background mod-
els. Scoring of the mixture components utilizes only the top-1 scor-
ing mixture component as determined by the 2048 mixture compo-
nent background GMM.

The target speaker scores are also normalized by the mean and
standard deviation estimates of a set of held out impostor speakers.
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Table 1. Score Mapping Results.

Common Condition Core Condition
DCF EER DCF EER

System (x1000) (%) (x1000) (%)
LLR (No T-Norm)

Baseline 54.0 15.0 54.5 16.0
Gaussian Mapping 53.8 14.3 56.6 15.1
Spline Mapping 54.1 13.1 56.1 13.5

(Spline Self Test)� (52.5) (12.4) (53.6) (12.3)
T-Norm
Baseline 48.7 14.5 50.9 15.4

Gaussian Mapping 49.3 14.1 51.0 15.4
Spline Mapping 46.9 12.7 47.5 13.1

(Spline Self Test)� (45.6) (11.7) (45.6) (11.9)

This procedure is known as T-norm [8].

5. RESULTS

The systems were evaluated on the NIST 2004 Speaker Recognition
database [9]. The NIST 2003 data set was used as the held out set
for estimating the GMM component-wise statistics. The interesting
contrast between these two databases is that the NIST 2003 speech
database consists predominantly of cellular phone calls, while the
NIST 2004 data set is comprised of a significant quantity of landline
telephone calls. This mismatch will indicate how well the mapping
generalizes.

These experiments examine the benefit of incorporating a sec-
ondary classifier layer that maps the acoustic model log-likelihood
ratio scores to a corrected LLR score domain. The results constitute
a table of minimum Detection Cost Function (DCF) and Equal Er-
ror Rate (EER) statistics and a Detection Error Tradeoff (DET) plot
(see [9]). The minimum DCF is the minimum cost of an optimal
tradeoff of weighted miss and false alarm probabilities.

Table 1 presents the NIST 2004 speaker recognition results for
the common and core conditions. There are three score mapping sys-
tems evaluated in addition to the baseline. The Gaussian mapping is
the mapping technique identified at the end of Section 2. The spline
base mapping is the score mapping approach which is dependent on
the model soft count. The spline self test item is the optimistic result
when the spline parameters are trained on data from the NIST 2004
dataset. For the basic LLR system without T-Norm applied, the ef-
fect of LLR mapping tends to degrade the performance marginally
for the DCF measurements but provides significant improvements at
the equal error rate operating point. For both evaluation conditions,
with or without T-Norm, the spline mapping improves the EER by
at least 12% relative over the baseline. With T-Norm applied to the
spline approach, both the EER and DCF are consistently enhanced.

Figure 5 plots the Detection Error Tradeoff (DET) performance
for the basic GMM LLR system, the spline based LLR mapping and
the corresponding T-Norm equivalents.

6. CONCLUSIONS

This paper identified the importance of log-likelihood ratio correc-
tion and demonstrated the potential improvements attributed to nor-
malizing the frame based log-likelihood ratio scores according to
the robustness of feature space sub-regions. In this work a map-
ping based on the training counts for each mixture component was
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Fig. 5. DET plot for the baseline and secondary classifier systems
with and without T-Norm (core condition).

proposed. Normalization was performed as a score shift and scale
specific to each mixture component and its corresponding training
count. The spline based mapping results indicated a consistent equal
error rate reduction over the baseline across the measured conditions.
Further work may examine mappings that are specific to handset and
gender in training and testing.
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