
QUICK FMLLR FOR SPEAKER ADAPTATION IN SPEECH RECOGNITION1

Balakrishnan Varadarajan2

Johns Hopkins University
Baltimore, Maryland, USA

bvarada2@jhu.edu

 Daniel Povey and Stephen M. Chu

IBM T. J. Watson Research Center
Yorktown Heights, New York, USA

{dpovey, schu}@us.ibm.com

1 This work was funded in part by DARPA contract HR0011-06-2-0001.
2 The author was at IBM T. J. Watson Research Center during this work.

ABSTRACT

Feature space Maximum Likelihood Linear Regression (fMLLR) is
a widely used technique for speaker adaptation in HMM-based
speech recognition. However, in extremely resource constrained
systems the time required to perform the sufficient statistics accu-
mulation for fMLLR adaptation can be considerable. In this paper
we describe a novel method that can lead to significant reduction
in the time taken for statistics accumulation while preserving the
adaptation gains. The proposed Quick fMLLR (Q-fMLLR) algo-
rithm is implemented in a state-of-the-art large-vocabulary con-
tinuous speech recognition system, and evaluated on a broadcast
transcription task. We present results both in terms of the average
likelihood after adaptation and the character error rate. It is shown
that Q-fMLLR attains the performance of regular fMLLR with a
fraction of the computation.

Index Terms – MLLR, feature space MLLR, constrained MLLR,
fMLLR, speaker adaptation.

1. INTRODUCTION

Maximum likelihood linear regression (MLLR) and feature space
MLLR (fMLLR), also known as constrained MLLR, are com-
monly used speaker adaptation techniques [1][6]. However, in
extremely resource constrained systems the time required to accu-
mulate the statistics for fMLLR, which is O(d3) per frame where d
is the feature dimension, can be significant. In this paper, we de-
scribe a method that can reduce this time to O(d2).

In fMLLR, the auxiliary function we optimize has three parts:
a linear term, a quadratic term, and a log determinant. Most of the
time taken to compute the fMLLR transformation comes from
computing statistics for the quadratic term. The fast algorithm
proposed in this work reduces the computation by storing an ap-
proximation to the quadratic term, and uses this to optimize an
auxiliary function that has the same local gradient as the objective
function but an approximated Hessian. A similar concept was used
in [2] in the context of extending fMLLR to the case of full covari-
ance Gaussians.

The proposed technique is based on projecting the (diagonal)
precision matrix into a subspace for the purpose of accumulating
the quadratic statistics. In this paper we describe two variants of
our technique. The first is not guaranteed to increase the objective

function on any given iteration but will approach a local maximum
after many iterations. The second variant of the method is guaran-
teed to improve the objective function on every iteration, but at the
price of slower convergence.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the baseline fMLLR algorithm and the row-by-
row computation. The proposed quick fMLLR algorithm is de-
scribed in Section 3. Section 4 presents the experimental results,
followed by conclusions in Section 5.

2. BASELINE FMLLR

2.1. Basic Formulation

In the classic formulation of fMLLR, the adapted features for a
given speaker are computed through the affine transform

 ,ˆ)()(tt Wξx = (1)

where TT]1[xξ = is the input vector extended with an extra ele-
ment equal to unity, and W is a d by 1+d matrix, which can be
viewed as consisting of a square matrix A and a bias term b,

][AbW = .
The objective function consists of the log likelihood of the

transformed data given our models, plus the log determi-
nant Adetlog . The log likelihood of the transformed data given
the models is a complicated function to optimize, but through E-M,
we get an auxiliary function which is simply a sum of quadratic
functions of the rows of W. The auxiliary function is as follows:

 ∑
=

−+=
d

i
ii

T
ii

T
iF

1
5.0detlog)(wGwkwAW , (2)

where wi are the transposed rows of W. The 1+d dimensional
vectors ki and the 1+d by 1+d matrices Gi (for di ≤≤1) are the
sufficient statistics which are accumulated as follows:

 ∑∑
= =

=
T

t

tm
i

t
m

M

m
m

i
i

1

)()()(

1
)(2

1 ξk μγ
σ

 (3)

 ∑∑
= =

=
T

t

Tttt
m

M

m
m

i
i

1

)()()(

1
)(2

1 ξξG γ
σ

 (4)

where)(t
mγ are the Gaussian occupation probabilities, and T is the

number of frames in the data.

2.1. Row-By-Row Iterative fMLLR Computation

The matrix W can be estimated through maximization of the auxil-
iary function in equation (2) using an iterative update [1]. It ex-
ploits the fact that the determinant of a matrix equals the dot prod-
uct of any given row of the matrix with the corresponding row of
cofactors. To update the ith row of the transform, we let the col-
umn vector ic equal the transpose of the ith row of the cofactors of
A , appended to a zero in the first dimension to make a vector of
size 1+d , so that the determinant Adet can be represented as a
function of iw by i

T
i cw . Thus we can optimize the function,

 ii
T
ii

T
ii

T
i wGwkwcw 5.0|)log(| −+β , (5)

where β=T is the number of frames. The matrix of cofactors of A
equals T))(det(1−AA , and the value of wi that maximizes the ex-
pression in equation (5) is not affected by any scalar factor in ci.
We can more easily let ci equal the ith column of the current value
of 1−A (appended to a zero to make a 1+d dimensional column
vector) and thus avoid any numerical problems that could arise
when the determinant is very large or small. Let i

T
if cw= and

differentiate (5) w.r.t. iw , we see that the maximum occurs at
))/((1

iiii f kcGw += − β . Substituting this expression for iw into
the definition of f and multiplying by f, we get,

 0112 =−− −−
ii

T
iii

T
iff cGckGc β , (6)

in which f can be readily solved for using the quadratic formula.
(Note that in [2], the factor β is mistakenly omitted).

The value of the auxiliary function in (5) can be used to test
which solution to the quadratic equation is better. Alternatively,
one can just take the positive square root for more convenience,
essentially constraining A to have all positive eigenvalues, which
is almost always taken anyway. The procedure is iterative. Start-
ing from the baseline transform where 0 , == bIA , we apply the
update to each row in turn and continue iterating until the change
in the auxiliary function is smaller than a threshold, or for a fixed
number of iterations.

The entire update described here is also part of an E-M pro-
cedure, and if desired, can be applied for multiple iterations. This
is done by computing the Gaussian occupancies)(t

mγ using the
current transformed features)(ˆ tx and repeating all the steps de-
scribed above. Note that equations (3) and (4) still refer to the
original features rather than the transformed features.

3. Q-FMLLR

The proposed quick-fMLLR (Q-fMLLR) technique targets the
large computational load associated with accumulating the matri-
ces iG . The basic idea is that if the diagonal precisions (inverse
variances) were to lie in a smaller dimensional subspace than the
feature dimension, fewer statistics could be stored because iG
would be linearly dependent. Therefore, we find the least signifi-
cant dimensions in which the precisions vary and reject them, and
store a smaller number of matrices iĜ from which we can ap-
proximately reconstruct the matrices iG . In addition, we need to
be able to find the exact local gradient of the objective function so

that we will be optimizing a weak-sense auxiliary function for our
objective function [3]. So, instead of storing ik , we store a set of
different statistics, id , which represent the local gradient of the
objective function, and later use these to reconstruct ik .

3.1. Subspace Representation of Precisions

Rationale
In Q-fMLLR we intend to reject the least important dimensions in
which the precisions vary. A reasonable method of doing this is to
ask how we can get the least change in our models, as measured by
the K-L divergence of the changed model from the original model,
from rejecting a particular subspace of precisions. For simplicity
and efficiency, we intend to simply remove any amount of the
precision in the rejected subspace rather than find the optimal
value in the accepted subspace.

For an individual Gaussian m in a Gaussian mixture, let’s
write)(2)(/1 m

i
m

ip σ= and Tm
d

m
m pp][)()(

1 L=p . If Gaussian m has
probability mw in the mixture, the increase in the K-L divergence
from changing m

ip by a small value δ will be 2)(2 /5.0 m
im pw δ . If

we first pre-scale the precisions so that they are on average ap-
proximately equal to 1, the loss will be around 25.0 δmw , or just
the weight times half the squared distance, which means that it is
appropriate to do PCA on the pre-scaled precision vectors mp .
We introduce a weight in the PCA to both take account of the
Gaussian mixture weights and scale the precision elements of each
Gaussian to make them average to unity.

Method
The objective is to project mp from a d-dimensional space to an
n-dimensional subspace with an n by d matrix P , and project
back to get the approximated precisions with a d by n matrix Q .
To obtain P and Q , we first compute the average variance is in
each dimension, and then compute the variance-normalized scatter
matrix S with

 ∑∑
==

=
M

m
m

M

m

m
jj

m
iimij vpspsvS

11

)()(, (7)

where mv are modified weights,

2

1

)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑=
=

d

i

m
jjmm psdwv . (8)

For a HMM, we just use the mixture weights within the individual
states and assume all states are equally likely.

The projections P̂ and Q̂ within the space where the preci-
sions are normalized by is are computed as follows: let the first
row of P̂ be the principal eigenvector of S , the second row be
the eigenvector with the next largest eigenvalue, and so on. Q̂ is
the transpose of P̂ . And finally, P and Q are computed as

 .ˆ ,ˆ
iijijjijij ss QQPP == (9)

First row positivity
It is important later for our “safe” version of the algorithm to make
sure that the first row of P and the first column of Q have all posi-
tive elements. If they both have all negative elements we reverse

the sign. There is no other case that can occur because the first
eigenvector of S must have all positive or all negative elements,
which we show as follows. The principal eigenvector x of S is
the unit vector such that

 ∑∑ ∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M

m
m

M

m i

m
iiim

T wpsxw
11

2
)(Sxx (10)

is largest. If x had elements of different signs, it is easy to see
that we could make this expression larger by changing its elements
to be all positive (or negative), which would not affect the length
of x . Note that this depends on the fact that)(m

ii ps and mw are
all positive.

3.2. Statistics Accumulation

In Q-fMLLR, instead of computing statistics ik and iG as in
Equations 3 and 4, the statistics are computed as follows. First, ik
is replaced with id , which has the same dimensions as ik but
represents the gradient of the objective function around the current
point rather than the linear term of its quadratic part. Second, the
d matrices iG are replaced with the n matrices iĜ , with .dn ≤
Note that when dn = , this is equivalent to normal fMLLR.

 ∑∑
= =

−=
T

t

tt
i

m
i

t
m

M

m
m

i
i x

1

)()()()(

1
)(2)ˆ(1 ξd μγ

σ
 (11)

 ∑∑ ∑
= = =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

T

t

Tttt
m

M

m

d

j
m

j

ij
i

P

1

)()()(

1 1
)(2

ˆ ξξG γ
σ

 (12)

Note that)(ˆ t
ix refers to the current transformed feature, which on

the first iteration of EM would be the same as the untransformed
feature)(t

ix but would change if more than one iteration of EM is
performed. As with normal fMLLR, the Gaussian occupation
probabilities)(t

mγ are also dependent on the previous iteration’s
transformed features in the multiple iteration case.

We also investigated a safe version of Q-fMLLR that is guar-
anteed to increase the objective function on each iteration, al-
though as we will see, it converges much more slowly. In this
version we make sure that the elements of the reconstructed preci-
sion mQPp are always greater than or equal to the real precision
by adding some minimal amount of the first element in the com-
pressed vector space. (Recall that the first row of P and the first
column of Q are always positive.) Thus, the expression
∑)(2/ m

jijP σ in equation (12) is modified for the case when 0=i ,
to add this minimal amount.

3.3. Update

In the update phase of the Q-fMLLR, we first reconstruct the ap-
proximated G and k statistics as used in normal fMLLR:

 ∑=
j

jiji GQG ˆ (13)

 iiii wGdk += (14)

where iw is the transpose of the ith row of the fMLLR transforma-
tion matrix that was used while accumulating statistics (this would
just be the default matrix where 0 , == bIA on the first iteration).

The rest of the computation is the same as normal fMLLR. Note
that it is possible, although in practice very unlikely, for the matri-
ces iG to not be positive definite, which can cause an attempt to
take the square root of a negative number while solving the quad-
ratic equation in the row-by-row update. This can only occur if

.1 dn << In our implementation, the default matrix is returned
when this condition is detected. Theoretically this condition could
also lead to exceedingly large determinants of ,A which nonethe-
less can also be detected and rejected. In fact, our baseline
fMLLR computation already rejects determinants with absolute
values outside the range 0.1 and 1000 so no additional checks are
added.

3.4. Multi-Iteration Q-fMLLR

As discussed earlier, the fMLLR computation is part of an E-M
process and multiple iterations can help (as we shall see in the
results section). Multiple iterations are even more important with
the Q-fMLLR computation because each iteration only partially
optimizes the full auxiliary function that we would be using in
fMLLR. There is however a risk of instability because the method
uses an estimate of the second gradient of the objective function.
Close to the maximum, if the estimated second gradient in any
particular direction is too small by more than a factor of two then
instability will arise. This problem can be addressed as follows.

For each speaker, a factor f is introduced to scale the recon-
structed second gradient matrices iG , thus equation (13) becomes

 ∑=
j

jjii f GQG ˆ . (15)

On the first iteration of computation, the factor is initialized
to 0.1=f . If the objective function, which is simply the likeli-
hood of the transformed data given the HMM plus the determinant
of the transform times the number of frames, is observed to de-
crease on a subsequent iteration, then f is doubled and the itera-
tive process continues. Though less than optimal, e.g., it might be
better to backtrack to the previous iteration and apply the lar-
ger f at that point, this method is straightforward and effective.
All multi-iteration Q-fMLLR results presented here use this tech-
nique. To give the reader an idea of how often it is necessary to
change f , in the experiment shown below with 1=d and with six
iterations of update, f was increased to 2.0 in 57 of the 245
speakers at the end of the computation, and in only one case did it
reach 4.0.

4. EXPERIMENTS

4.1. Experimental Setup

The Q-fMLLR algorithm is implemented in a variant of the IBM
Mandarin broadcast transcription system [4].

The system uses continuous mixture density HMMs with con-
text-dependent states conditioned on cross-word quinphone con-
text. Two sets of acoustic models are built with maximum likeli-
hood training on 1,321 hours of broadcast news and broadcast
conversation speech released by LDC for the DARPA GALE pro-

gram: (1) a speaker independent (SI) model with 10K quinphone
states and 300K Gaussian densities, and (2) a speaker adaptive (SA)
model with 15K states and 500K Gaussians. The input audio is
sampled at 16 KHz and coded using 13-dememsional PLP features
with a 25ms window and 10ms frame-shift; nine consecutive
frames are spliced and projected to 40 dimensions using LDA and
maximum likelihood linear transform (MLLT). Vocal tract length
normalization (VTLN) is applied in SA training.

The language model is built by interpolating 20 back-off 4-
gram models using modified Kneser-Ney smoothing. The interpo-
lation weights are chosen to optimize the perplexity of a 364K
held-out set. In total, 5GB of text data is used in training. The
final language model has 6.1M n-grams and a vocabulary of 107K
words.

During decoding, an initial transcription of the input data is
first generated using the SI model. The output is then used to carry
out unsupervised Q-fMLLR, followed by a second-pass decoding
using the SA model.

4.2. Experimental Results

Adaptation and decoding experiments were carried out on the
dev’07 test set defined by the GALE consortium. The set is com-
posed of 2 hours and 32 minutes of Mandarin broadcast speech
collected from various TV stations in mainland China, Taiwan,
and Hong Kong. There are 44.6K characters in the reference.

The recognition results measured by character error rate
(CER) are summarized in Table 1. The result using the SA system
but no fMLLR transformation is 18.6%. The baseline results using
various iterations of full fMLLR computation are given in the last
row of the table, i.e. for n=40. As we can see, even down to n=1 to
the CER is essentially unchanged using the standard Q-fMLLR
method versus using the full fMLLR computation. However the
safe Q-fMLLR method degrades quickly as the dimensions are
reduced. Because it is hard to see any changes in the CER, we
show the objective function (likelihood) in Fig. 1. On the first

 iteration, setting n=1 vs. n=40 reduces the likelihood by 0.26,
which is 6.7% of the total objective function improvement. By the
sixth iteration, the n=1 approximation reduces the likelihood by
0.05 which is only 1.3% of the total change in likelihood.

The theoretical speedup from using n=1 versus the baseline
fMLLR computation is about 40; the actual speedup observed in
adaptation plus decoding was tiny because we tested on a very
slow LVCSR system. The use we envisage for this approach is in
much faster, small-vocabulary embedded speech recognizers.

5. CONCLUSIONS

We describe a novel method that can lead to significant reduction
in the time taken for statistics accumulation in fMLLR while pre-
serving the adaptation gains. The proposed Q-fMLLR algorithm is
validated in a state-of-the-art large-vocabulary continuous speech
recognition system. We show that Q-fMLLR attains the perform-
ance of regular fMLLR with a fraction of the computation. In fact,
test results suggest that the extremely efficient 1-dimensional Q-
fMLLR may be the best option as the loss incurred is likely to be
negligible. These findings would have an especially significant
impact in resource constrained systems, and may also be extended
to efficient updates for systems with full covariance matrices [2] or
multiple semi-tied covariance (STC) classes [5].

REFERENCES

[1] M.J.F Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Computer Speech and Language, vol. 12, pp.
75-98, 1998.
[2] D. Povey and G. Saon, “Feature and model space feature adaptation
with full covariance Gaussians,” in Proc. ICSLP’06, 2006.
[3] S. Wegmann, D. McAllaster, J. Orloff, and B. Peskin, “Speaker nor-
malization on conversational telephone speech,” in Proc ICASSP'96, vol. 1,
pp. 339-343, May 1996.
[4] S. M. Chu, H.-K. Kuo, Y. Y. Liu, Y. Qin, Q. Shi, and G. Zweig, “The
IBM Mandarin broadcast speech transcription system,” in Proc.
ICASSP’07, vol. 2, pp. 345-348, May 2007.
[5] M. J. F. Gales, “Semi-tied covariance matrices for Hidden Markov
Models”, in IEEE Transactions on Speech and Audio Processing, vol. 7,
pp. 272-281, 1999.
[6] V. V. Digilakis, D. Rtischev and L. G. Neumeyer, “Speaker adaptation
using constrained estimation of Gaussian mixtures”, in IEEE Transactions
on Speech and Audio Processing, vol. 3, pp. 357-366, 1995.

Fig. 1. As n increases, the objective function score of Q-fMLLR
converges quickly to that of regular fMLLR (40=n) except in the
safe variant. Objective function before optimization was -53.75.

0 5 10 15 20 25 30 35 40
−51.5

−51.0

−50.5

−50.0

−49.5

subspace dimension (n)

ob
je

ct
iv

e
fu

nc
tio

n
sc

or
e

Q−fMLLR: iteration 6
Q−fMLLR: iteration 3
Q−fMLLR: iteration 1
Q−fMLLR: iteration 1 (safe)

Table 1. Character error rates on dev’07, showing results after 1,
3, and 6 iterations of Q-fMLLR and one iteration of safe Q-
fMLLR, with the subspace dimension n varying from 1 to 40.

n Q-fMLLR:1 Q-fMLLR:3 Q-fMLLR:6 safe Q-fMLLR:1
1 16.8 16.5 16.4 17.5
2 16.8 16.5 16.4 17.4
5 16.7 16.5 16.4 17.3

10 16.7 16.4 16.4 17.2
20 16.7 16.4 16.4 17.0
40 16.7 16.4 16.3 16.7

