
UNIVERSAL BACKGROUND MODEL BASED SPEECH RECOGNITION1

Daniel Povey and Stephen M. Chu

IBM T. J. Watson Research Center
Yorktown Heights, New York, USA

{dpovey, schu}@us.ibm.com

 Balakrishnan Varadarajan2

Johns Hopkins University
Baltimore, Maryland, USA

bvarada2@jhu.edu

1 This work was funded in part by DARPA contract HR0011-06-2-0001.
2 The author was at IBM T. J. Watson Research Center during this work.

ABSTRACT

The universal background model (UBM) is an effective framework
widely used in speaker recognition. But so far it has received little
attention from the speech recognition field. In this work, we make
a first attempt to apply the UBM to acoustic modeling in ASR.
We propose a tree-based parameter estimation technique for
UBMs, and describe a set of smoothing and pruning methods to
facilitate learning. The proposed UBM approach is benchmarked
on a state-of-the-art large-vocabulary continuous speech recogni-
tion platform on a broadcast transcription task. Preliminary ex-
periments reported in this paper already show very exciting results.

Index Terms – UBM, universal background model, speech recog-
nition, acoustic modeling.

1. INTRODUCTION

The universal background model (UBM) [1] is an effective frame-
work that has found great success in speaker recognition. Concep-
tually, it is a large mixture of Gaussians that covers all speech, and
in the context of speaker recognition, it is adapted to each speaker
using a maximum a posteriori (MAP) scheme.

The UBM so far has received little attention from the auto-
matic speech recognition (ASR) field. In this paper, we make a
first attempt to apply UBM to acoustic modeling in ASR, and
demonstrate substantial improvements at the maximum likelihood
(ML) level. The basic idea is to adapt the UBM to each context-
dependent phone rather than to each speaker. The context-
dependent phones are not an unstructured collection of phones but
are related via a tree structure, hence we devise a set of smoothing
methods that can utilize this structure. Training is done through
multiple iterations of EM [2] rather than just one as in [1]. Fur-
thermore, in our best-performing system, a separate semi-tied co-
variance (STC) transform [3] is applied for each Gaussian in the
UBM. One challenge in UBM-based speech recognition is the
very large size of the resulting models. An entropy based pruning
method similar to [5] is used to address the problem. The results
in this paper should be considered preliminary, as we have not had
time to explore the many design choices involved.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the baseline UBM learning algorithm. The pro-
posed tree-based parameter estimation technique is described in
Section 3. Section 4 presents the experimental results, followed by
conclusions in Section 5.

2. UNIVERSAL BACKGROUND MODELS

The UBM is a Gaussian Mixture Model (GMM) whose parameters
consist of K weights kw , means kμ and (diagonal) variances kΣ ,
which in a speaker identification context are MAP adapted to each
speaker’s data to create a GMM for that speaker. In the speech
recognition context, let us consider that the speech is already split
up into many speech classes Jj L1= based on the tree-clustered
context dependent phones, and our reference transcriptions have
been Viterbi-aligned given some previously existing models, so
that we have (zero-one) phone posteriors,)(tjγ , so we can treat
the set of frames for which 1)(=tjγ for some j as we would the
data from a particular speaker.

It is helpful to consider a single iteration of standard EM up-
date starting from the UBM. Define the Gaussian-specific poste-
rior,

∑ =

= K

k kkk

kkk
jjk

tgw
tgwtt

1
),|)((

),|)(()()(
Σμx

Σμxγγ . (1)

Define the count statistics)(tjkγ and the first and second-order
statistics jkx and jkS as,

 ∑∑∑
===

===
T

t
ijk

T

t
iijkijk

T

t
ijkjkjk txtStxtxt

1

2

11
)()(,)()(),(γγγγ , (2)

where k is the Gaussian index in the UBM. The standard EM up-
date for the speech-class specific mean jkμ and jkΣ would be,

ijk

jk

iijk

iijk
jk

ijk

ijkJ

j jk

jk
jk n

Sx
w 2

1

: ,: ,: μ
γγ

μ
γ

γ
−=Σ==

∑ =

 (3)

The MAP adaptation scheme for the means and variances corre-
sponds to adding a small number τ of statistics with mean and
variance the same as the original Gaussian, to the statistics ob-
tained from the data:

ijk

jk

iikikijk

iijk
jk

kijk

ijk

Sx
i 2

2)(
: ,: μ

τγ
μτ

τγ
τμ

μ −
+

Σ++
=Σ

+

+
= (4)

Various schemes have been used for the MAP adaptation of the
weights for speaker identification, which we will not describe here.

If multiple iterations of EM are used as in [2], the Gaussian
posteriors are derived from the previous iteration’s models. So, on
the second iteration, we define,

∑ =

= K

k jkjkk

jkjkk
jjk

tgw

tgw
tt

1
),|)((

),|)((
)()(

Σμx

Σμx
γγ (5)

3. TREE-BASED PARAMETER ESTIMATION

3.1. Global Tree

The form of MAP adaptation applied to our models is more com-
plicated than the scheme described in the previous section.

First we obtain a single global tree to describe all of our pho-
netic states. The standard tree-clustering of the phones as used in
our baseline system is a simple binary tree within each of the three
states of each context-independent phone, where each non-leaf
node in the tree represents a question about the acoustic context
and each leaf node is a clustered HMM state. There is no second
pass of clustering the resulting nodes, which would cause problems
with the approach described here. We merge all of these individ-
ual trees by forming a node corresponding to each phone, with
three children corresponding to each of the three states, and then
forming a single parent node for all phones.

For parameter estimation, we need smoothing methods that
utilize this tree structure. We will present our smoothing equations
and describe some of the design goals used in devising these
smoothing equations, which are loosely based on the Kneser-Ney
equations as used for smoothing language models [4].

3.2. Design Goals

Taking and giving the same amount
If any amount of data is taken away from a particular state for use
in smoothing, the same amount should be given back to it. This
principle has various good effects. For instance, in mean smooth-
ing, no data point matters more than any other in terms of its effect
on the (weighted) mean of the entire model; in weight smoothing,
it implies that the overall counts of a particular UBM Gaussian k
tend to be preserved.

Limiting behavior
As the number of counts for any particular UBM Gaussian k in any
particular state j becomes large, the weight and mean and variance
value should approach the standard E-M value, regardless of the
counts of other Gaussians within that state.

Behavior within the tree
In the mean and variance updates, if a particular leaf node in the
tree has observations for a particular Gaussian j but belongs to a
branch of the tree that is otherwise devoid of counts for j, the
smoothing scheme should in essence smooth up to the closest parts
of the tree where counts are available. It should not have the bad
property that an isolated count within some section of the tree can
manage to smooth to itself and in effect not get any smoothing.
This constraint is why in the following equations we will some-
times use hard rather than soft count cutoffs.

3.3. Mean and Variance Smoothing

Our smoothing method for Gaussian parameters has an adjustable
parameter gτ (g refers to Gaussians; 20 is our default value), simi-
lar to the τ used in standard MAP.

The mean and variance smoothing is presented here as an op-
eration on the counts jkγ and the first and second order statistics

jkx and jkS . Let us say that we have numbered all of the nodes
in our global clustering tree with the leaf nodes JK1 first, fol-
lowed by the non-leaf nodes up to a total JN > , and that a node
j’s parent)(jparent is always numbered higher than j.

The smoothing is an operation done separately for each Gaus-
sian k in the UBM. For a particular k, we first initialize the statis-
tics jkγ , jkx and jkS such that the leaf nodes have the statistics
accumulated from the data, and the non-leaf nodes initially have
zero statistics. Let),(jifmove → denote the operation of mov-
ing a count f of statistics from node i to node j (defined if fik ≥γ),
which is carried out by:

f
f
f

jkjk

ikikjkjk

ikikjkjk

+=

+=

+=

γγ
γ
γ

:
)(:
)(:
SSS
xxx

 (6)

f

f
)γf)(γ(

ikik

ikikikik

ikikikik

−=
−=
−=

γγ
γγ

:
))((:

:
SS

xx
 (7)

First, the data is distributed up the tree. For each node
11 −= Nj K , we first estimate the amount to discount,)(jd . At

leaf nodes (Jj ≤), we use a soft rule:)/(:)(τγτγ += jkjkjd ; and
at non-leaf nodes, we use a hard rule:),min(:)(τγ jkjd = . We
then perform the operation))(),((jparentjjdmove → . If at the
top of the tree we have zero counts, we simply put some default
statistics with zero mean and unit variance there. This should not
happen unless there is a problem with the initial UBM.

We then distribute data down the tree, taking back the same
amount of (now averaged) statistics that were previously removed:
for 11K−= Nj , do))(),((jjparentjdmove → . While smooth-
ing down the tree we refrain from removing data from the interme-
diate nodes by skipping equation (7). This makes no difference to
the final statistics at the leaf nodes. The means and variances at
the leaf nodes are then estimated using the normal formulae for
EM, from the smoothed statistics. For any leaf nodes that have
zero counts, we estimate their means and variances from the statis-
tics at the closest parent node that does not have a zero count.

Note that unlike the baseline MAP smoothing, this discount
scheme does not ever refer to the original Gaussian parameters

kμ and kΣ , instead smoothing back to discounted statistics from
other speech classes.

3.4. Weight Smoothing

The weight smoothing method has two τ values, a smaller sτ and
a larger lτ . Similar to the Gaussian update, the method operates
in two phases: counts move up the tree in one and move down in
the other. However, instead of performing a separate operation per
UBM Gaussian index k as in the Gaussian smoothing, here a single
operation accounts for all the weights.

For data preparation, we initialize the counts jkγ at the leaf
nodes Jj K1= , and set zero counts 0=jkγ for non-leaf nodes

NJj K1+= . In phase one, for each tree node Nj K1= , we
first work out the total amount to discount from node j,

 ∑
=

=
K

k
jksjd

1
),min()(γτ (8)

using the smaller of the two τ values. Then a proportion)(jp is
removed from any counts up to a maximum of the larger τ value,
where)(jp is computed to achieve the desired discount)(jd :

 ∑∑
==

=
K

k
jkl

K

k
jksjp

11
),min(),min()(γτγτ , (9)

and the smoothing formulae are,

),min()(:

),min()(:),(),(

jkljkjk

jklkjparentkjparent

jp

jp

γτγγ
γτγγ

−=

+=
 (10)

In phase two, we go in the reverse order ,11K−= Nj and take
back the same amount of counts that was given up to each parent.
Again, we do not destroy statistics as we go down the tree,

 ∑
=

+=
K

k
kjparentkjparentjkjk jd

1
),(),()(: γγγγ (11)

Finally, using the smoothed counts we compute the weights in the
normal way,

 ∑
=

=
J

j
jkjkjkw

1
: γγ (12)

3.5. Gaussian Pruning

Without pruning, the resulting models would be extremely large.
We use the global tree mentioned above to prune the Gaussian
parameters in a similar way to the entropy-based pruning of lan-
guage models [4], by attempting to minimize the loss in average
likelihood of the data given the pruned model. The method is
parameterized by a penalty p (e.g. 10-7), the maximum loss in like-
lihood allowable to delete one Gaussian. The pruning algorithm
operates for each UBM Gaussian k separately. First, using the
smoothing methods above we compute jkμ , jkΣ ,and jkw for all

Jj K1= ; and we also compute occupation probabilities jp for all
the speech states j using observation counts.

As in the smoothing algorithms, we have counts jkγ and sta-
tistics jkx and jkS associated with each node in the tree. We ini-
tialize these to zero for the non-leaf nodes NJj K1+= , and for
the leaf nodes Jj K1= ,

)(, , 2
ijkiijkjkiijkjkjkjkjkjjk Swp μλλλ +Σ=== μx (13)

This algorithm relies on the notion of moving statistics around the
tree, much as in the smoothing algorithms in the previous sections.
We use the likelihood penalty incurred by combing the statistics
from two nodes 1j and 2j ; this is a positive number which we
compute as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−

+

+
++

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑

=

2

2

1

2

21

21

21

21

21

21

2

2

2

2

2

1

1

1

1

1

log)(

log

log5.0),(

kjkj

ikjikj

kjkj

iikjiikj
kjkj

kj

ikj

kj

iikj
kj

D

i kj

ikj

kj

iikj
kj

xxSS

xS

xS
jjp

λλλλ
λλ

λλ
λ

λλ
λ

 (14)

The pruning algorithm is iterative, as follows (for a particular k):
(1) Until convergence is reached: a. For each non-leaf node j that
has zero count jkλ and has more than one child with nonzero
count, Move the statistics of the child with the smallest count up to
the parent. b. For each non-leaf node, work out the nonzero child
with the smallest penalty for combining with its parent. If this
penalty is smaller than p, combine the child with the parent by
moving the child’s statistics up to the parent. (2) Until conver-
gence is reached: For any parent node that has exactly one child
with zero count, move the parent’s statistics down to the child. (3)
Finally: For all nodes with nonzero statistics, turn the statistics
back into Gaussian parameters:

ijk

jk

iijk

iijk
jk

jk
jk

S
2: ,: μ

λλ
μ −=Σ=

x
 (15)

This is a greedy algorithm which may not be optimal. We use the
pruned parameters by going up the tree from a leaf node until we
find estimated parameters, and using those.

To estimate the relative importance of the smoothing and
pruning steps, we computed the likelihood loss due to each com-
pared to a normal EM update. A small variance floor was used in
the EM baseline for the Gaussian update to avoid infinities due to
single counts. The loss accrued from Gaussian smoothing, weight
smoothing, and Gaussian pruning was (in natural log) 0.17, 0.004,
and 0.06, respectively. This indicates that the smoothed weights
are very close to their EM values, thus any adjustment to the
weight smoothing formulae is not likely to have much effect.

The UBM structure gives us a convenient way to quickly
evaluate the resulting Gaussian mixtures by using a subset of UBM
indices k. On each frame we first evaluate all the Gaussians in the
original UBM and pick the top n Gaussians, e.g. for n = 4; we take
the union of this, and all Gaussians within a certain likelihood
threshold from the top, which threshold is set to 4 also. The opti-
mal parameter settings have not been investigated.

3.6. Semi-tied Covariance

Semi-tied covariance (STC) is used in our UBM implementation.
A different STC class is used for each UBM Gaussian k. The STC
computation is standard and not specific to the UBM framework,
but the UBM framework does provide a convenient way to define
the STC classes. In our experiments, the STC estimation is carried
out on the second and fourth iterations of update. Note that the
semi-tied covariance is not applied to the original UBM which is
only used to pick the top Gaussian indexes on each frame for prun-
ing, as described above. Because only a small number of Gaussian
indexes are used, the semi-tied covariance computation is efficient
since we only have to transform the features separately for each of
those indexes. However we cannot claim that there is a particu-
larly favorable combination between multiple STC classes and
UBMs from a word error rate point of view since the improve-
ments we report from multiple STC classes are similar to those
reported in [7] in a normal system.

STC introduces additional complications for fMLLR and
MLLR adaptation. In principle, we could use the technique we
previously introduced in [5] for full covariance adaptation. How-
ever, this would require too much memory in the UBM case. For
simplicity, in our speaker-adapted UBM experiments, the fMLLR

and MLLR adaptation matrices are derived from a baseline system
using intermediate transcriptions generated from an un-adapted
UBM-based decoding. This was done whether or not the UBM-
based model had semi-tied covariance.

4. EXPERIMENTS

4.1. Experimental Setup

The UBM is implemented in a variant of the IBM Mandarin
broadcast transcription system [6].

The acoustic models are continuous mixture density HMMs
with context-dependent states conditioned on cross-word quin-
phone context, built with maximum likelihood training on 1,321
hours of broadcast news and broadcast conversation speech re-
leased by LDC for the DARPA GALE program. The input audio
is sampled at 16 KHz and coded using 13-dememsional PLP fea-
tures with a 25ms window and 10ms frame-shift; nine consecutive
frames are spliced and projected to 40 dimensions using LDA and
maximum likelihood linear transform (MLLT). Vocal tract length
normalization (VTLN) is applied. The systems have 15K states;
the baseline fMLLR build (SAT-trained) system had 500K Gaus-
sians which was our normal setup but our VTLN only baseline had
1M Gaussians which was about 0.8% better than with 500K Gaus-
sians. The UBM based systems have the same number of states
and K=1000, and after pruning at the threshold of 10-7 have about
the same number of parameters as a system with 2M Gaussians.
We smooth with 5.3,5.2,20 === lsg τττ . The UBMs were ini-
tialized by k-means likelihood-based clustering of the Gaussians in
a baseline model, followed by 1 iteration of E-M on the data.
UBM-based training was for 7 iterations, iterations 2 and 4 being
devoted to STC estimation.

The language model is built by interpolating 20 back-off 4-
gram models using modified Kneser-Ney smoothing. The interpo-
lation weights are chosen to optimize the perplexity of a 364K
held-out set. In total, 5GB of text data is used in training. The
final language model has 6.1M n-grams and 107k words. Recogni-
tion experiments were carried out on the dev’07 test set defined by
the GALE consortium. The set is composed of 2 hours and 32
minutes of Mandarin broadcast speech collected from various TV
stations in mainland China, Taiwan, and Hong Kong. There are
44.6K characters in the reference.

4.2. Experimental Results

The recognition results in character error rate (CER) are shown in
Table 1 and Fig. 1. At the VTLN level we got 1.3% absolute im-
provement which was versus an unusually large system; at the
fMLLR level we got 1.4% absolute improvement. Probably the
“fairest” comparison in the table is between 17.9% (baseline) and

17.5% (UBM) at the VTLN level, which is without STC and where
the UBM system is only 2 times bigger than the baseline (we do
not believe that a larger baseline would give much improvement).

5. CONCLUSIONS

In this work, we make a first attempt to apply the UBM to acoustic
modeling in ASR. We propose a tree-based parameter estimation
technique for UBMs, and describe a set of smoothing and pruning
methods to facilitate learning. The proposed UBM based approach
is benchmarked on a state-of-the-art large-vocabulary continuous
speech recognition platform on a broadcast transcription task. Our
results at the ML level are substantially better than our previous
state-of-the art system. It is possible that most or all of the im-
provement could have been obtained using a combination of mul-
tiple STC classes and more parameters, but nevertheless we be-
lieve that the extra structure of the UBM based approach makes it
attractive as a starting point for other improvements; it is also very
fast to train and test.

REFERENCES

[1] D. A. Reynolds, T. F. Quatieri, and R. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digital Signal Processing, vol.
10, no. 1-3, pp. 19-41, 2000.
[2] R. Vogt, J. Pelecanos, S. Sridharan, “Dependence of GMM adaptation
on feature post-processing for speaker recognition,” in Proc.
EUROSPEECH’03, pp. 3013-3016, September 2003.
[3] M. J. F. Gales, “Semi-tied covariance matrices for hidden Markov
models” IEEE Transactions on Speech and Audio Processing, vol. 7, no. 3,
pp. 272 – 281, 1999.
[4] R. Kneser, H. Ney, “Improved backing-off for M-gram language mod-
eling,” in Proc. ICASSP’95, vol. 1, pp. 181-184, May 1995.
[5] D. Povey and G. Saon, “Feature and model space feature adaptation
with full covariance Gaussians,” in Proc. ICSLP’06, September 2006.
[6] S. M. Chu, H.-K. Kuo, Y. Y. Liu, Y. Qin, Q. Shi, and G. Zweig, “The
IBM Mandarin broadcast speech transcription system,” in Proc.
ICASSP’07, vol. 2, pp. 345-348, May 2007.
[7] K. C. Sim, M. J. F. Gales: “Minimum phone error training of precision
matrix models,” IEEE Transactions on Audio, Speech and language Proc-
essing, vol. 14, no. 3, pp. 882-889, 2006.

Fig. 1. UBM-based systems consistently outperform the non-
UBM baseline at both the VTLN and fMLLR levels.

1 2 3 4 5 6 7
15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

Training Iteration (n)

C
E

R
 (

%
)

UBM w/o STC, VTLN Build

UBM w/ STC, VTLN Build

UBM w/ STC, fMLLR Build

Baseline, VTLN Build

Baseline, fMLLR Build

Table 1. On dev’07, UBM gives significant improvement in
CER(%) compared with the baseline system.

Systems Baseline UBM UBM w/ STC
VTLN 17.9 17.5 16.6

+fMLLR 16.6 -- 15.0
+MLLR 16.2 -- 14.8

