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ABSTRACT

Constrained Maximum Likelihood Linear Regression (CMLLR)is a
widely used speaker adaptation technique in which an affine trans-
form of the features is estimated for each speaker. However,when
the amount of speech data available is very small (e.g. a few sec-
onds), it can be difficult to get sufficiently accurate estimates of the
transform parameters. In this paper we describe a method of estimat-
ing CMLLR robustly from less data. We do this by representingthe
CMLLR transform matrix as a weighted sum over basis matrices,
where the basis is constructed in such a way that the most important
variation is concentrated in the leading coefficients. Depending on
the amount of data available, we can choose to estimate a smaller or
larger number of coefficients.

Index Terms— Speech Recognition, Speaker Adaptation,
MLLR

1. INTRODUCTION

Constrained Maximum Likelihood Linear Regression (CMLLR)[1,
2] is a popular form of speaker adaptation, in which an affine trans-
form is applied to the speech features:

x → A
(s)

x + b
(s), (1)

wherex ∈ R
D is the feature vector, andA(s) andb(s) are transfor-

mation parameters specific to speakers. We will write this here in
the more convenient form

x → W
(s)

x
+, (2)

wherex+ =
ˆ

xT , 1
˜T

, andW(s) =
h

A(s) ; b(s)
i

. CMLLR was

originally described as a model-space transform; because it can also
be represented as a feature-space transform, it is sometimes known
as feature-space MLLR (fMLLR).

CMLLR is typically estimated by Maximum Likelihood; an EM
algorithm described in [2] is commonly used to estimate it. When
the amount of adaptation data available is very small (e.g. less than
about five seconds), the parameters cannot be robustly estimated and
CMLLR does not lead to improvements in Word Error Rate (WER).
Various methods have been proposed to improve CMLLR estimation
for limited adaptation data. These include the use of block-diagonal
and diagonal forms of the matrixA [2], the use of Bayesian priors
(“fMAPLR”) [3, 4], and representingW in a smaller dimension us-
ing a basis [5, 6]. In [6] it was found that it is important to train
such a basis using a Maximum Likelihood criterion rather than the
Principal Components Analysis (PCA) scheme previously used. In
Section 2 we discuss this prior work in more detail.

In Section 3 we describe the key ideas behind our approach. We
representW(s) using a sum over a set of basis matrices. The general

idea is the same as [5] but we have solved a number of problems with
the original approach to make it efficient and to ensure that we do not
degrade results when a lot of adaptation data is available. Space con-
straints do not permit a detailed description of our algorithm, which
we have presented in [7] along with more detailed experiments.

We present our experimental results in Section 4. We compare
our method with standard CMLLR, diagonal and block-diagonal
CMLLR, and fMAPLR. Our experiments show a clear advantage of
our technique over these baselines. We conclude in Section 5.

2. PRIOR WORK ON ROBUST CMLLR ESTIMATION

Various methods have been proposed for robust adaptation onsmall
amounts of data. In [2] it was mentioned that diagonal or block-
diagonal structures forA can be used to reduce the number of pa-
rameters to estimate. Because of their simplicity such methods are
frequently used, and we use them as baselines here.

Bayesian techniques were investigated in [3] and [4], both un-
der the name fMAPLR. The basic idea is to use the Maximum A
Posteriori rule to choose the parameter, given a suitable prior, i.e. to
maximize:

p(W|X ) ∝ p(X|W)p(W), (3)

whereX is the speech data,p(X|W) is the data likelihood, and
p(W) is the prior likelihood. The two papers both used Gaussian
priors overp(W) (viewing the matrix as the vector of its concate-
nated rows) but they used different ways of compactly representing
the prior covariance which is a large matrix of dimensionD(D+1)×
D(D+1) whereD is the feature dimension. In [4] a factor-analyzed
form was used (i.e. the covariance matrix was a diagonal matrix
plus the outer product of a rectangular matrix), and in [3] a diagonal
matrix was used. In both cases the Maximum Likelihood estimates
of the matricesW(s) for a set of speakers were used as training
data for the prior parameters (a simple “empirical Bayes” approach).
The version of fMAPLR we used as a baseline here is a slight gen-
eralization of [3], in which we give the covariance of the prior a
block-diagonal structure (one block for each row ofW) and also in-
troduced a scaling factor on the log-prior term, which we tuned to
optimize WER. We trained the prior only on speakers with a rela-
tively large amount of adaptation data, as we found this worked best.

A basis representation of the CMLLR matrix was described
in [5]. The idea is to representW as a sum over basis matrices:

W
(s) =

N
X

n=1

d(s)
n Wn, (4)

whereN is some basis size decided in advance with1 ≤ N < D(D+1)

(e.g. N=200), Wn are the basis matrices, andd(s)
n are speaker-

specific coefficients. This improved WER for small amounts of



adaptation data, but the only baseline reported was conventional
CMLLR, and the technique ultimately degraded performance as the
amount of adaptation data became larger (due to the fixed basis
size). In [6] the same idea was pursued further, and it was found that
for best performance it was important to train the matricesWn in
a Maximum Likelihood fashion. The method described there was
not very practical because the EM algorithm used to train thebasis
matrices was extremely slow.

Basis reprepresentations have also been proposed for conven-
tional Maximum Likelihood Linear Regression (MLLR), e.g. Eigen-
MLLR [8]. The disadvantage of such approaches is that they are dif-
ficult to make very efficient, since they require the model’s means to
be transformed for each new speaker. This will typically dominate
the computation time in cases where the amount of adaptationdata
is very small. Another adaptation method suited to fast adaptation is
Eigenvoices [9], but methods of that type are not very practical due
to the very large number of parameters to be learned in training time.

3. KEY IDEAS OF OUR APPROACH

The basis representation we use is very similar to (4), except with
an offset term and (more importantly) a basis size that varies per
speaker:

W
(s) = W0 +

N(s)
X

n=1

d(s)
n Wn, (5)

where0 ≤ N(s) ≤ D(D+1) andW0 = [I ; 0]. In our work
we just setN(s) to be proportional to the the amount of adaptation
data (but not exceedingD(D+1) which is the number of parame-
ters inW). Note that while this is a model selection problem, we
have not compared against standard model selection methodssuch as
the Bayesian Information Criterion (BIC), or the Aikake Information
Criterion (AIC). This is because, in our experience, for these kinds of
problems, tunable selection criteria such as BIC do not perform very
differently from simple count-based heuristics. Non-tunable criteria
like the AIC are problematic for speech tasks due to the extent of
model incorrectness. Our approach to settingN(s) was chosen for
simplicity and speed.

Probably the key aspects of our work that distinguish it from[5,
6] are the use of a varying number of basis elements, and our ap-
proach to computing the basis matricesWn. This approach approx-
imates Maximum Likelihood but is still efficient and is applicable
when the basis size is to be decided in test time. The precondition-
ing we use to accomplish this has the useful side effect that it speeds
up the algorithms we use to learn the parametersd

(s)
n in test time.

Some of the ideas used here are derived from prior work described
in [10], which describes an efficient method of updating the CM-
LLR transformation for a differently structured GMM-basedsystem
with full covariances, called a Subspace Gaussian Mixture Model
(SGMM).

Below we discuss the ideas behind various aspects of our algo-
rithm. In Section 3.1 we discuss the preconditioning; in Section 3.2
we describe how we compute the basis matricesWn; in Section 3.3
we describe how, in test time, we decide the value ofN(s) and com-
pute the coefficientsd(s)

n .

3.1. Preconditioning

In many of our computations it is easiest to think ofW as a vector
rather than a matrix, so we define

w = vec (WT ), (6)

where thevec operator stacks the columns, so with the transpose,w

is a row stack ofW; the transpose is useful later on. We will implic-
itly make use of (6), by making it apply to pairsw andW when-
ever they share the same subscripts, superscripts and othermodifiers.
Consider a second-order Taylor expansion of the auxiliary function,
taken aroundw = w0. We write∆w for (w−w0). The approxi-
mation is written in the following form:

Q(s)(w) ≃ K + (∆w)T
p

(s) − 1
2
(∆w)T

H
(s)(∆w), (7)

where the quantitiesp(s) andH(s) may be computed from the CM-
LLR statistics [7]. The idea is to precondition via a change of vari-
ables, such that when written in the new variable,H(s) has good
condition number (i.e. it is close to the unit matrix times a constant).
This is quite straightforward to do. First we define

H =
1

P

s
β(s)

X

s

H
(s), (8)

whereβ(s) is the data count for speakers, soH is the average value
of theH(s) term (normalized by the number of frames). Note that
this is aD(D+1) × D(D+1) matrix. We do the Cholesky decom-
position

H = CC
T , (9)

with C a lower triangular matrix. We then perform a change of
variables by defining

ŵ = C
T
w. (10)

Thus we can rewrite (7) as

Q̂(s)(ŵ) = (∆ŵ)T
p̂

(s) − 1
2
(∆ŵ)T

Ĥ
(s)(∆ŵ), (11)

via appropriate definitions of̂p(s) andĤ(s). We can show that in
the transformed space, the Hessian averages to the unit matrix (i.e.
Ĥ = I).

3.2. Basis computation

The basis computation also relies on the Taylor approximation of (7).
We additionally make the assumption thatH(s) ≃ β(s)H (equiva-
lent toĤ(s) ≃ β(s)I). This is reasonable as long as all the speakers
are sufficiently similar. This assumption is necessary in order to re-
duce the problem to a PCA problem, which is tractable. These ap-
proximations may seem quite crude, but the key is that they make the
basis computation fast and practical. In [6] more exact and expensive
methods were considered, but they were too slow to be practical.

Under these assumptions it is easy to compute a Maximum Like-
lihood solution for the basis matrices. The way we formulatethe
problem is to ask for a set{Wn, 1 ≤ n ≤ D(D+1)}, such that
whatever basis size1 ≤ N < D(D+1) we choose, the training data
likelihood (subject to our assumptions and approximations) is max-
imized. Let us consider the problem in its vector form (i.e. in terms
of wn). In order to ensure good condition of the auxiliary function
when written in terms of the coefficientsdn, we insist that the trans-
formed form of the vectors (i.e.̂wn) form an orthonormal set. We
will consider some fixed but arbitrary basis size1 ≤ N ≤ D(D+1),
and writeŵ as a sum over basis elements, i.e.:

ŵ = ŵ0 +
N

X

n=1

dnŵn. (12)

Here,ŵ0 is the transformed version of the identity feature-mapping
W0. What we are doing is limiting∆ŵ ≡ ŵ− ŵ0 to the subspace



spanned by the vectorŝwn. We will now describe how we com-
pute the basis elementŝwn in such a way that they approximately
maximize the objective function for all basis sizes simultaneously.

We first write down the auxiliary function in̂w without yet ap-
plying the subspace constraint of (12). Rewriting (11) using Ĥ(s) ≃
β(s)I,

Q̂(s)(ŵ) ≃ (∆ŵ)T
p̂

(s) − 1
2
β(s)(∆ŵ)T (∆ŵ). (13)

It is easy to see that this is maximized by∆ŵ(s) = 1/β(s)p̂(s), and

that the corresponding auxiliary function value is1/(2β(s)) p̂(s) T

p̂(s).
Defining

M̂ =
X

s

1

β(s)
p̂

(s)
p̂

(s) T

, (14)

we may write the total auxiliary function, summed over all speakers,
astr (M̂)/2. Suppose we writeXN = [ŵ1 . . . ŵN ], with theŵn

orthonormal, to represent a basis of sizeN . It is not hard to show
that when limitingŵ to the form (12), the corresponding total auxil-
iary function value istr (XT

NM̂XN)/2, and that the basisXN that
maximizes this can be obtained by doing an eigenvalue decompo-
sition onM̂ and lettingŵn be then’th eigenvector ofM̂ (ordered
from largest to smallest eigenvalue), so that whatever basis sizeN
we choose,XN always contains the topN eigenvectors.

Thus, with the help of the preconditioning and some additional
approximations, we have reduced the difficult Maximum Likelihood
problem considered in [6] to a much easier PCA problem. After
computing the vectorŝwn we can reverse the co-ordinate changes
and un-stack the matrix columns to obtain the set{Wn, 1 ≤ n ≤
D(D+1)}.

3.3. Test time computation

In test time, the optimization problem is as follows: we are given the
speaker-specific statisticsK(s), G

(s)
i

andβ(s) (c.f. [2]), the basis
{Wn, 1 ≤ n ≤ D(D+1)} and a basis size0 ≤ N(s) ≤ D(D+1)

and we need to estimate the speaker-specific coefficientsd
(s)
n of (5).

Our update is iterative. On each iteration1 ≤ q ≤ Q (where
e.g. Q = 10), we compute the gradient of the auxiliary function
w.r.t. the coefficients{d(s)

n , 1 ≤ n ≤ N(s)} and select a search
direction. In the basic version of our method the search direction is
just the gradient direction; we also tried a modification based on the
conjugate gradient method. Then we do a line search in that direc-
tion; our line search is iterative and based on Newton’s method (in
one dimension). Both our basic method and the conjugate gradient
modification converge very fast and are guaranteed not to decrease
the auxiliary function; results here are with the basic version.

The number of coefficients we use was determined by the for-
mulaN(s) = min(⌊ηβ(s)⌋, D(D+1)), whereη is a constant set by
hand (e.g.η = 0.2) that controls how many parameters we add for
each new frame of data.

4. EXPERIMENTAL RESULTS

4.1. System descriptions

We used two systems to evaluate our techniqe: an “Interactive Voice
Response” (IVR) system, trained for telephone-based voiceinter-
face applications, for which the test data mostly containedshort ut-
terances, and an “Enhanced Voice Mail” (EVM) system, trained for
transcribing voice mails, where the test data was mostly longer ut-
terances. We further split the test sets into different duration bins, in

order to see how our technique performs with different amounts of
test data.

Both systems use cross-word triphone context dependency,
with standard phone context clustering and three-state left-to-right
HMMs. The features are 13-dimensional MFCCs with∆, ∆∆
and∆∆∆ (i.e. deltas, accelerations and third derivatives), reduced
in dimension with HLDA. We train with cepstral mean normal-
ization; in test time this is applied in an on-line fashion. We do
not use VTLN, but rely instead on gender-dependent models. The
gender-independent models are used in the first pass of decoding to
obtain the supervision hypothesis and the corresponding phone-level
alignments.

The IVR system was trained on 7500 hours of speech, mostly
voice search data recorded over the telephone but also read speech.
The average length of training utterances is 5.3 seconds. The feature
dimension after HLDA is 36. Each of the three (GI, male and female)
models has 9116 clustered states with on average 46 Gaussians per
state. The models were trained with Minimum Classification Error
(MCE). The test set contains three subsets consisting of digits, city-
state pairs and stock names, totaling 20 hours of speech, with 21K
words and an average utterance length of 3.4 seconds.

The EVM system is as the IVR system but with 33 dimensional
feature vectors and trained with MMIE. The number of clustered
states is 10144, with on average 47 Gaussians per state. The training
data consists of 1700 hours of read speech with an average utterance
length of 5.3 seconds, plus 130 hours of voicemail recordings with
an average utterance length of 35.3 seconds (this data is scaled up by
a factor of 20 in training). Our test set contains five different sources
of voicemail test data, totaling 507 utterances with 4 hoursof speech
in total. The average length of the test utterances is 28.4 seconds.

We apply the CMLLR estimation (in both the baselines and our
technique) in a segment-wise online fashion. That is, we divide the
utterances up into segments and the CMLLR estimation for each
segment only sees the statistics for that segment and preceding seg-
ments. For the statistics accumulation, the CMLLR transform esti-
mated from the previous segments is used for within-phone align-
ment (the phone-level segmentation is fixed by the first pass de-
coder). The segmenter is tuned to give about three segments per
utterance.

IVR EVM
Mean Duration (s) 2.2 3.8 5.4 7.7 11.6 28.1 51 101

#Words 29K 22K 30K 12K 7K 11K 12K 6.5K
#Utterances 12.6K 3.7K 3.5K 1.4K 210 138 81 23
Length (h) 7.8 3.9 5.2 2.9 0.68 1.08 1.14 0.64

%WER (Unadapted) 5.64 1.63 0.65 0.98 32.8 31.4 33.3 35.8

Table 1. Utterance duration bins and baseline WERs

In order to see how our technique performs on different utterance
lengths, we broke up the IVR and EVM test sets into four subsets
each, corresponding to different duration bins. Table 1 describes
these bins, along with the baseline (unadapted) WERs in eachbin.
There is a very large variation in WERs because different bins are
dominated by different types of test data. In particular, the longer
IVR bins are dominated by digits which have very low error rates.

4.2. Baselines

The baseline adaptation strategies we compare against are “full
CMLLR”, which refers to CMLLR estimated in the standard way,
“block-diagonal CMLLR”, in which the matrixA is block diago-
nal with three equal-sized blocks, and “diagonal CMLLR” where
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A is diagonal. Since we use HLDA features there is no special
meaning to the three blocks; however, it seems to work in practice.
We also compare with fMAPLR [3], for which we use a separate
full-covariance Gaussian for each row; we extend it by putting a
scale on the log prior term and tuning the scale. For the IVR system
our fMAPLR is applied to block diagonal CMLLR with 3 blocks,
and for the EVM system we use a full matrix; this choice was made
to optimize WER. The prior used for fMAPLR in the 3-block case
is a full-covariance Gaussian that models the non-zero partof each
row, which is a vector of dimensionD/3 + 1. We have limited our
baselines that those that we might conceivably use in practice, which
ruled out [5, 6] because they degrade results when the amountof
adaptation data is large (and they are also quite complex).

4.3. Results

Figure 1 shows the relative WER improvement of various CMLLR
adaptation strategies, compared with using no CMLLR adaptation,
for the duration bins described in Table 1. It can be seen thatour
method performs best, followed by fMAPLR, followed by standard
CMLLR; depending on the utterance length, either full, block-
diagonal or diagonal CMLLR was best. The points on the left half
of the graph are from IVR, and those on the right half are from EVM.
The various bins of data are at very different absolute WERs (see
Table 1, last row), and the relative improvements tend to be higher
when the absolute WER is low. This explains the wide variations
seen in Fig. 1. The line with full CMLLR (triangles) substantiates
our claim that CMLLR does not give improvements below about
five seconds of data.

Until about 20 seconds of adaptation data, our technique gives a
substantial improvement over fMAPLR and the other baselines, and
after that the differences are small. In addition, for less than about 3
seconds of data (first bin), none of the adaptation methods give very
much improvement. The improvement that our method gives versus
CMLLR is greatest between about 5 and 15 seconds of speech. For
less than 20 seconds of speech our technique gives more than twice
the improvement of fMAPLR, taking CMLLR as the baseline. For
20 seconds or more, the differences are small. Taking into account
the online manner in which the CMLLR transforms are estimated,
these statements should be modified when generalizing to systems
in which the CMLLR is estimated after seeing the whole utterance.
Our estimate is that the greatest improvement from our method will
be between about 3 and 10 seconds of adaptation data.

The test time computation needed for our method is faster than

the conventional approach to CMLLR estimation; see [7] for more
details. Since CMLLR estimation is in any case very fast, this is not
a significant practical advantage.

We ran matched-pairs significance tests comparing our method
to CMLLR, and to fMAPLR, in each of the eight duration bins.
Against CMLLR, our method gives significant improvements (at the
90% level) in all but the longest-duration bin. Against fMAPLR, our
method only gives significant improvements for the third, fourth and
sixth bins, but if we do the significance test for IVR as a whole, and
EVM as a whole, it is significant in both cases.

5. CONCLUSIONS

We have described a practical algorithm for estimating Constrained
MLLR transforms robustly by training a set of basis matricesand, in
test time, restricting the estimated matrix to a leading subset of the
basis matrices. Stated very crudely, our method reduces theamount
of adaptation data that is needed to obtain a substantial improvement,
from about 10 seconds to about 3 seconds. We have shown that
it gives significant improvements versus the next best baseline we
tested, fMAPLR, and is faster than conventional CMLLR. In [7] we
have described our algorithm in a way which is intended to make it
easy to reproduce our results.
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