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ABSTRACT

Constrained Maximum Likelihood Linear Regression (CMLL&)
widely used speaker adaptation technique in which an affarest
form of the features is estimated for each speaker. Howexesn
the amount of speech data available is very small (e.g. aéa~ s
onds), it can be difficult to get sufficiently accurate esteseof the
transform parameters. In this paper we describe a methastiofa-
ing CMLLR robustly from less data. We do this by representimg

CMLLR transform matrix as a weighted sum over basis matrices

where the basis is constructed in such a way that the mostienio
variation is concentrated in the leading coefficients. Deljpgg on
the amount of data available, we can choose to estimate ¢esmal
larger number of coefficients.

Index Terms— Speech Recognition, Speaker Adaptation,
MLLR

1. INTRODUCTION
Constrained Maximum Likelihood Linear Regression (CMLLR)
2] is a popular form of speaker adaptation, in which an affiaag-
form is applied to the speech features:

x — A®x + b, (1)
wherex € R” is the feature vector, and ) andb(®) are transfor-
mation parameters specific to speakeMVe will write this here in
the more convenient form

x — WExT, )

wherext = [x”, 1]T, andw® = [A(S) : b(s)}. CMLLR was
originally described as a model-space transform; becaese ialso
be represented as a feature-space transform, it is sonsekinog/n
as feature-space MLLR (fMLLR).

CMLLR is typically estimated by Maximum Likelihood; an EM
algorithm described in [2] is commonly used to estimate ithéV
the amount of adaptation data available is very small (@sgs than
about five seconds), the parameters cannot be robustlyatetirand
CMLLR does not lead to improvements in Word Error Rate (WER).
Various methods have been proposed to improve CMLLR estimat
for limited adaptation data. These include the use of bltieijonal
and diagonal forms of the matrix [2], the use of Bayesian priors
(“fMAPLR”) [3, 4], and representingWv in a smaller dimension us-
ing a basis [5, 6]. In [6] it was found that it is important taitr
such a basis using a Maximum Likelihood criterion rathenttiee
Principal Components Analysis (PCA) scheme previouslyuse
Section 2 we discuss this prior work in more detail.
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idea is the same as [5] but we have solved a number of problétms w
the original approach to make it efficient and to ensure tleadavnot
degrade results when a lot of adaptation data is availapi@cescon-
straints do not permit a detailed description of our aldgnit which
we have presented in [7] along with more detailed experiment

We present our experimental results in Section 4. We compare
our method with standard CMLLR, diagonal and block-diagona
CMLLR, and fMAPLR. Our experiments show a clear advantage of
our technique over these baselines. We conclude in Section 5

2. PRIOR WORK ON ROBUST CMLLR ESTIMATION

Various methods have been proposed for robust adaptatismat
amounts of data. In [2] it was mentioned that diagonal or lbloc
diagonal structures foA can be used to reduce the number of pa-
rameters to estimate. Because of their simplicity such oustlare
frequently used, and we use them as baselines here.

Bayesian techniques were investigated in [3] and [4], bath u
der the name fMAPLR. The basic idea is to use the Maximum A
Posteriori rule to choose the parameter, given a suitalie pe. to
maximize:

p(WI]X) o< p(X[W)p(W), ®)
where X is the speech datgy(X|W) is the data likelihood, and
p(W) is the prior likelihood. The two papers both used Gaussian
priors overp(W) (viewing the matrix as the vector of its concate-
nated rows) but they used different ways of compactly reprisg
the prior covariance which is a large matrix of dimensi®fD+1) x
D(D+1) whereD is the feature dimension. In [4] a factor-analyzed
form was used (i.e. the covariance matrix was a diagonalixnatr
plus the outer product of a rectangular matrix), and in [3jeeydnal
matrix was used. In both cases the Maximum Likelihood edésa
of the matriceswW(®) for a set of speakers were used as training
data for the prior parameters (a simple “empirical Bayegraach).
The version of f/MAPLR we used as a baseline here is a slight gen
eralization of [3], in which we give the covariance of theqora
block-diagonal structure (one block for each rowM) and also in-
troduced a scaling factor on the log-prior term, which weetlito
optimize WER. We trained the prior only on speakers with a-rel
tively large amount of adaptation data, as we found this edibest.

A basis representation of the CMLLR matrix was described
in [5]. The idea is to represeiW as a sum over basis matrices:

N
W =3 AW, 4)
n=1

whereN is some basis size decided in advance with N < D(D+1)

In Section 3 we describe the key ideas behind our approach. We.g. N=200), W,, are the basis matrices, anff” are speaker-
represenW (*) using a sum over a set of basis matrices. The generalpecific coefficients. This improved WER for small amounts of



adaptation data, but the only baseline reported was capwerht
CMLLR, and the technique ultimately degraded performarsctha

where thevec operator stacks the columns, so with the transpese,
is a row stack oW; the transpose is useful later on. We will implic-

amount of adaptation data became larger (due to the fixed basitly make use of (6), by making it apply to paiv¢ and W when-

size). In [6] the same idea was pursued further, and it wasdolat
for best performance it was important to train the matrig€s in

ever they share the same subscripts, superscripts anchulérers.
Consider a second-order Taylor expansion of the auxiliangtion,

a Maximum Likelihood fashion. The method described there wataken aroundv = wo. We write Aw for (w—wy). The approxi-

not very practical because the EM algorithm used to trairbtmas
matrices was extremely slow.

Basis reprepresentations have also been proposed forreonve

tional Maximum Likelihood Linear Regression (MLLR), e.gigen-
MLLR [8]. The disadvantage of such approaches is that theylid
ficult to make very efficient, since they require the modelé&ams to
be transformed for each new speaker. This will typically date
the computation time in cases where the amount of adaptdétm
is very small. Another adaptation method suited to fast tedem is
Eigenvoices [9], but methods of that type are not very pcattiue
to the very large number of parameters to be learned in tgiine.

3. KEY IDEAS OF OUR APPROACH

The basis representation we use is very similar to (4), éxeéh
an offset term and (more importantly) a basis size that sapier
speaker:
N(s)
W =Wo+ > dYwW,,
n=1

where0 < N(s) < D(D+1) andWg, = [I; 0]. In our work

®)

mation is written in the following form:

0 (w) ~ K + (Aw)"p® — L(Aw)TH® (Aw), (7)

1
2
where the quantitiep’® andH®) may be computed from the CM-
LLR statistics [7]. The idea is to precondition via a chanf&avi-
ables, such that when written in the new variad®? has good
condition number (i.e. it is close to the unit matrix timesoastant).
This is quite straightforward to do. First we define

H= s ®

wheres3(®) is the data count for speakersoH is the average value
of the H®) term (normalized by the number of frames). Note that
thisisaD(D+1) x D(D+1) matrix. We do the Cholesky decom-
position

H=cc?, 9)

with C a lower triangular matrix. We then perform a change of
variables by defining

w=0C"w. (10)

we just setN (s) to be proportional to the the amount of adaptation Thus we can rewrite (7) as

data (but not exceedin®(D+1) which is the number of parame-
ters inW). Note that while this is a model selection problem, we

have not compared against standard model selection metbobsis
the Bayesian Information Criterion (BIC), or the Aikakednfnation
Criterion (AIC). This is because, in our experience, fostakinds of
problems, tunable selection criteria such as BIC do notperf/ery
differently from simple count-based heuristics. Non-toieecriteria
like the AIC are problematic for speech tasks due to the &xién
model incorrectness. Our approach to settvgs) was chosen for
simplicity and speed.

Probably the key aspects of our work that distinguish it ffém

QW (w) = (Aw)pY — f(Aw)"H (Aw),  (11)
via appropriate definitions gb( and H*). We can show that in
the transformed space, the Hessian averages to the unik rfiar

H=1).

3.2. Basis computation

The basis computation also relies on the Taylor approxonaif (7).
We additionally make the assumption that> ~ 3*)H (equiva-

6] are the use of a varying number of basis elements, and our afent toH*) ~ g()I). This is reasonable as long as all the speakers

proach to computing the basis matrida,. This approach approx-
imates Maximum Likelihood but is still efficient and is apalble
when the basis size is to be decided in test time. The pretondi
ing we use to accomplish this has the useful side effect tisatieds
up the algorithms we use to learn the parame&éfréin test time.
Some of the ideas used here are derived from prior work destri
in [10], which describes an efficient method of updating thé-C
LLR transformation for a differently structured GMM-basggstem
with full covariances, called a Subspace Gaussian Mixtuoeldl
(SGMM).

are sufficiently similar. This assumption is necessary @eoto re-
duce the problem to a PCA problem, which is tractable. These a
proximations may seem quite crude, but the key is that theserttee
basis computation fast and practical. In [6] more exact apeiesive
methods were considered, but they were too slow to be pahctic
Under these assumptions it is easy to compute a Maximum Like-

lihood solution for the basis matrices. The way we formulaie
problem is to ask for a seftW,,, 1 < n < D(D+1)}, such that
whatever basis size< N < D(D+1) we choose, the training data
likelihood (subject to our assumptions and approximajiamsax-

Below we discuss the ideas behind various aspects of our algéMized. Let us consider the problem in its vector form (iretérms

rithm. In Section 3.1 we discuss the preconditioning; int®eac3.2
we describe how we compute the basis matriés; in Section 3.3
we describe how, in test time, we decide the valu&/¢g) and com-

pute the coefficients!? .

3.1. Preconditioning

In many of our computations it is easiest to think\df as a vector
rather than a matrix, so we define

W = vec (VVT)7 (6)

of w,,). In order to ensure good condition of the auxiliary funaotio
when written in terms of the coefficients,, we insist that the trans-
formed form of the vectors (i.ew,) form an orthonormal set. We
will consider some fixed but arbitrary basis siz& N < D(D+1),
and writew as a sum over basis elements, i.e.:

N
W = Wo +Zdn\?vn.

n=1

(12)

Here,wy is the transformed version of the identity feature-mapping
‘Wy. What we are doing is limiting\w = w — wy to the subspace



spanned by the vectoss,,. We will now describe how we com-
pute the basis element,, in such a way that they approximately
maximize the objective function for all basis sizes sirmétausly.

We first write down the auxiliary function i without yet ap-
plying the subspace constraint of (12). Rewriting (11) g&*) ~
ﬂ(S)I,

Q¥ (w) = (Aw) ") — 18 (Aw) T (Aw).  (13)
Itis easy to see that this is maximized byw®) = 1/5)p(*), and
that the corresponding auxiliary function valua j§248)) p) * p(.
Defining

~ 1 (o) ()T

NI — Z Wp( IO
we may write the total auxiliary function, summed over akakers,
astr (M) /2. Suppose we writ& x = [w1 ... W], with thew,,
orthonormal, to represent a basis of si¥e It is not hard to show
that when limitingw to the form (12), the corresponding total auxil-
iary function value isr (X3 MXy)/2, and that the basiX v that

(14)

order to see how our technique performs with different arnteoh
test data.

Both systems use cross-word triphone context dependency,
with standard phone context clustering and three-statedeight
HMMs. The features are 13-dimensional MFCCs with AA
andAAA (i.e. deltas, accelerations and third derivatives), reduc
in dimension with HLDA. We train with cepstral mean normal-
ization; in test time this is applied in an on-line fashion.e \dlo
not use VTLN, but rely instead on gender-dependent modete T
gender-independent models are used in the first pass of idgcmd
obtain the supervision hypothesis and the correspondingestevel
alignments.

The IVR system was trained on 7500 hours of speech, mostly
voice search data recorded over the telephone but also peadts
The average length of training utterances is 5.3 secondsfegture
dimension after HLDA is 36. Each of the three (GI, male anddkn
models has 9116 clustered states with on average 46 Gasigsan
state. The models were trained with Minimum ClassificatioroE
(MCE). The test set contains three subsets consisting asdaity-
state pairs and stock names, totaling 20 hours of speedh,2&/K

maximizes this can be obtained by doing an eigenvalue desomp words and an average utterance length of 3.4 seconds.

sition onM and lettingw,, be then’th eigenvector ofM (ordered
from largest to smallest eigenvalue), so that whateversksize N
we chooseX n always contains the toly eigenvectors.

Thus, with the help of the preconditioning and some addiiion
approximations, we have reduced the difficult Maximum Litkebd

The EVM system is as the IVR system but with 33 dimensional
feature vectors and trained with MMIE. The number of cluster
states is 10144, with on average 47 Gaussians per stateralmeag
data consists of 1700 hours of read speech with an averagante
length of 5.3 seconds, plus 130 hours of voicemail recosdimgh

problem considered in [6] to a much easier PCA problem. Afteran average utterance length of 35.3 seconds (this dataésisqaby
Computing the vectorsv,, we can reverse the co-ordinate Changesa factor of 20 in tralnlng). Our test set contains five différeources

and un-stack the matrix columns to obtain the §&f,,,1 < n <
D(D+1)}.

3.3. Test time computation

In test time, the optimization problem is as follows: we akeg the
speaker-specific statistid€®), G'*) and 3*) (c.f. [2]), the basis
{W,,1 <n < D(D+1)} and a basis sizé < N(s) < D(D+1)
and we need to estimate the speaker-specific coefficikitsf (5).

Our update is iterative. On each iteratibrn< ¢ < @ (where
e.g. @ = 10), we compute the gradient of the auxiliary function
w.r.t. the coeﬁicientqu),l < n < N(s)} and select a search
direction. In the basic version of our method the searctctoe is
just the gradient direction; we also tried a modificationdabsn the
conjugate gradient method. Then we do a line search in the¢-di
tion; our line search is iterative and based on Newton’s ow{n
one dimension). Both our basic method and the conjugateegad
modification converge very fast and are guaranteed not teedse
the auxiliary function; results here are with the basic izgrs

of voicemail test data, totaling 507 utterances with 4 hafipeech
in total. The average length of the test utterances is 2&dnsis.

We apply the CMLLR estimation (in both the baselines and our
technique) in a segment-wise online fashion. That is, wigldithe
utterances up into segments and the CMLLR estimation foh eac
segment only sees the statistics for that segment and pngcsel-
ments. For the statistics accumulation, the CMLLR transfesti-
mated from the previous segments is used for within-phoigm-al
ment (the phone-level segmentation is fixed by the first pass d
coder). The segmenter is tuned to give about three segments p
utterance.

IVR EVM
Mean Duration (s) 2.2 38 54 7.7[116 281 51 101
#Words 29K 22K 30K 12K| 7K 11K 12K 6.5K
#Utterances 12.6K 3.7K 3.5K 1.4K| 210 138 81 23
Length (h) 7.8 39 52 29068 1.08 1.14 0.64
%WER (Unadapted)5.64 1.63 0.65 0.9432.8 31.4 33.3 35.8

Table 1. Utterance duration bins and baseline WERs

The number of coefficients we use was determined by the for-

mulaN (s) = min(|n3® |, D(D+1)), wheren is a constant set by

In order to see how our technique performs on different atte

hand (e.g.n = 0.2) that controls how many parameters we add forlengths, we broke up the IVR and EVM test sets into four sibset

each new frame of data.

4. EXPERIMENTAL RESULTS

4.1. System descriptions

We used two systems to evaluate our technige: an “Intesagbice
Response” (IVR) system, trained for telephone-based vivitee-
face applications, for which the test data mostly contasteatt ut-
terances, and an “Enhanced Voice Mail” (EVM) system, trdifoe
transcribing voice mails, where the test data was mostlgdont-
terances. We further split the test sets into different tlomebins, in

each, corresponding to different duration bins. Table Xuless
these bins, along with the baseline (unadapted) WERs in lsiach
There is a very large variation in WERs because differens bire
dominated by different types of test data. In particulae litmger
IVR bins are dominated by digits which have very low erroesat

4.2. Baselines

The baseline adaptation strategies we compare againstfiie
CMLLR”, which refers to CMLLR estimated in the standard way,
“pblock-diagonal CMLLR”, in which the matrixA is block diago-
nal with three equal-sized blocks, and “diagonal CMLLR” wéhe



% the conventional approach to CMLLR estimation; see [7] faren

Our method, eta=0.2 —O—' details. Since CMLLR estimation is in any case very fasg thinot
2| e MR X ] a significant practical advantage.

Diagonal CMLLR --—+—--

We ran matched-pairs significance tests comparing our rdetho
to CMLLR, and to fMAPLR, in each of the eight duration bins.
Against CMLLR, our method gives significant improvementsife
90% level) in all but the longest-duration bin. Against fMIAR, our
method only gives significant improvements for the thirdirtb and
sixth bins, but if we do the significance test for IVR as a whaled
EVM as a whole, it is significant in both cases.

20

15

10

Relative %WERR vs. unadapted

5. CONCLUSIONS

o i " We have described a practical algorithm for estimating @airsed

Average utterance length in seconds (within each bin) MLLR transforms robustly by training a set of basis matriaed, in
test time, restricting the estimated matrix to a leadingsstibf the
basis matrices. Stated very crudely, our method reducesntiogint
of adaptation data that is needed to obtain a substantiabirament,
from about 10 seconds to about 3 seconds. We have shown that
A is diagonal. Since we use HLDA features there is no speciaj gives significant improvements versus the next best baseie
meaning to the three blocks; however, it seems to work intig@C  tested, fMAPLR, and is faster than conventional CMLLR. Ih\

We also compare with fMAPLR (3], for which we use a separatehave described our algorithm in a way which is intended toeviak
full-covariance Gaussian for each row; we extend it by pgtta  easy to reproduce our results.

scale on the log prior term and tuning the scale. For the I\dResy
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