Frame Discrimination Training of HMMs for Large Vocabulary Speech Recognition

Dan Povey, Phil Woodland

Cambridge University Engineering Department

Frame Discrimination:

- Discriminative technique developed by Kapadia at CUED
- Objective function related to Maximum Mutual Information (MMI) objective function
- Results on isolated digit and letter recognition were promising

Current work:

- Implement Frame Discrimination for LVCSR
- Computational problem
- Roadmap algorithm developed to speed up computation
- Computation 3 times faster than a previous implementation of MMI using lattices
- Results as good or better than MMI

MMI and Frame Discrimination

MMI:

$$\mathcal{F}_{\lambda} = \sum_{r=1}^{R} \log \frac{P_{\lambda}(\mathcal{O}_{r}|\mathcal{M}^{w_{r}})P(w_{r})}{\sum_{\hat{w}} P_{\lambda}(\mathcal{O}_{r}|\mathcal{M}^{\hat{w}})P(\hat{w})}$$
$$= \sum_{r=1}^{R} \log \frac{P_{\lambda}(\mathcal{O}_{r}|\mathcal{M}^{w_{r}})}{P_{\lambda}(\mathcal{O}_{r}|\mathcal{M}^{\text{gen}})}$$

Discriminate against general model of speech $\mathcal{M}^{\mathrm{gen}}$ (recognition model).

FD:

$$\mathcal{F}_{\lambda} = \sum_{r=1}^{R} \log \frac{P_{\lambda} \left(\mathcal{O}_r | \mathcal{M}^{w_r} \right)}{P_{\lambda} \left(\mathcal{O}_r | \mathcal{N} \right)}$$

- ullet HMM ${\cal N}$ is one state HMM: weighted sum of all states in ${\cal M}^{
 m gen}$
- Weights derived from Forward-Backward alignment data

Computation for Frame Discrimination training

- Extended Baum-Welch (EBW) update equations used
- Align speech data to HMMs
- Calculation dominated by computation of Gaussian probabilities

For transcription:

- Use Forward-Backward algorithm using beam pruning
- ullet Perhaps only 100 Gaussians per time frame o fast.

For the denominator model \mathcal{N} :

• Tens of thousands of Gaussians per time frame: impractical

Roadmap algorithm

The problem:

- Tens of thousands of Gaussians
 – but frame probability may be dominated by two or three
- Algorithm needed to find the most important Gaussians per frame, without calculating them all

The solution:

- ullet Make list of "near" Gaussians for each Gaussian in system o need distance measure
- Navigate between Gaussians to find best set for current input frame
- Like a roadmap...

Distance measure

Overlap for one dimension is defined as $\int_{-\infty}^{\infty}$ of the minimum of the two Gaussians:

- Suitable distance measure is $-\log(\text{Overlap})$.
- Sum over all dimensions of diagonal-covariance Gaussians.

Constructing the roadmap

Use distance measure to construct a roadmap.

About 20 links to and from each Gaussian

- 1. Make a list of most similar Gaussians
 - Start with random list, iteratively improve it
- 2. Make lists "symmetric"
- 3. Remove redundant links

Performance of Roadmap algorithm

Evaluating performance:

- ullet If we miss some important Gaussians, the probability of the speech file given the model ${\cal N}$ will decrease
- Measure the average decrease in log probability per frame

	% Gaussians	Loss in log
	calculated probabili	
Roadmap	3.7%	0.004
VQ	4%	0.3

(For a system with 9,500 Gaussians)

FD Results on Resource Management

- 1,000 word task
- 109 speakers, 4 hours of training data
- decision-tree state-clustered cross-word triphones, 1577 states
- word-pair grammar
- 4 iterations of FD training done starting from ML-trained models

	Initial	Final	Decrease
	Word Error	Word Error	
1 Mixture	8.44	6.73	20.3 %
6 mixture	4.10	3.76	8.3 %

FD Results on Wall Street Journal

- 66 hours of training data (WSJ 0+1)
- decision-tree state-clustered cross-word triphones, 6399 states
- 65k word trigram LM

Num mix	% WER		% WER reduction	
Comps	MLE	FD	FD	MMIE
1	14.64	13.14	10.4	
2	12.52	11.30	9.7	8.6
4	10.96	10.30	6.0	
12	9.63	9.42	2.2	-0.9

Conclusions

- FD implemented on a large vocabulary task
- Used roadmap algorithm to greatly reduce computation
- Introduced overlap distance measure between Gaussians
- FD seems to work at least as well as MMI
- FD faster than lattice-based MMI: takes 6 times as long as ML training instead of 15 times as long

Smoothing in EBW equations

$$\hat{\mu}_{j,m} = \frac{\left\{\theta_{j,m}^{\text{num}}(\mathcal{O}) - \theta_{j,m}^{\text{den}}(\mathcal{O})\right\} + D\mu_{j,m}}{\left\{\gamma_{j,m}^{\text{num}} - \gamma_{j,m}^{\text{den}}\right\} + D},$$

$$\hat{\sigma}_{j,m}^{2} = \frac{\left\{\theta_{j,m}^{\text{num}}(\mathcal{O}^{2}) - \theta_{j,m}^{\text{den}}(\mathcal{O}^{2})\right\} + D(\sigma_{j,m}^{2} + \mu_{j,m}^{2})}{\left\{\gamma_{j,m}^{\text{num}} - \gamma_{j,m}^{\text{den}}\right\} + D} - \hat{\mu}_{j,m}^{2},$$

- Set D at phone level
- ullet Floor D at max in phone of any $\gamma_{j,m}^{\mathrm{num}}$ or $\gamma_{j,m}^{\mathrm{den}}$
- Improved both objective function and recognition results

