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Abstract
In this paper we describe various fast and convenient implemen-
tations of Speaker Adaptive Training (SAT) for use in training
when Maximum Likelihood Linear Regression (MLLR) is to
be used in test time to adapt Gaussian means. The memory and
disk requirements for most of these are similar to those for nor-
mal ML training; the computation in all cases is dominated by
the need to compute the MLLR transforms. Commonly MLLR
is combined with Constrained MLLR (CMLLR) which can be
viewed as a feature space affine transform and has its own form
of SAT (we will call this CMLLR-SAT); we experiment with
combining the two forms of SAT. We find that even on top of
CMLLR-SAT, MLLR-SAT gives improvements.
Index Terms: speech recognition, speaker adaptation, speaker
adaptive training, linear regression

1. Introduction
Maximum Likelihood Linear Regression (MLLR) [1] is a com-
monly used speaker adaptation technique used for adapting
Gaussian mean vectors in Hidden Markov Model based speech
recognition. The means are adapted per speaker using an affine
transform:

µ̂
(s)
j = A

(s)µj + b
(s). (1)

This may be combined with the use of regression classes [2], in
which the transform parameters A

(s) and b
(s) depend on the

particular Gaussian j; sometimes there are just two transforms
for silence and non-silence, sometimes a variable number based
on a tree of clustered phones.

Speaker Adaptive Training as used for MLLR [4] is a
method of maximizing the likelihood of the training data given
the MLLR-adapted models. It involves maximizing a quadratic
objective function for each Gaussian mean µj . Various ap-
proaches have been proposed to implement it [5] but they all
appear to involve storing statistics per speaker on disk at least
up to Gaussian counts, and they all appear to have excessive
disk and/or memory requirements when the number of speakers
becomes very large.

The techniques that we present here avoid storing on disk
any speaker-specific statistics during training. We demonstrate
different approaches, one (the most exact) that stores statistics
similar in size to the statistics needed to train full-covariance
Gaussians, and others that store statistics similar in size to statis-
tics used for normal ML training with diagonal Gaussians. The
time taken by all of these methods is dominated by the compu-
tation of the MLLR transform itself which is always going to be
necessary for any SAT implementation.

We also investigate the combination of two forms of SAT,
one corresponding to MLLR (the algorithm which we describe
here) and the other corresponding to Constrained MLLR (CM-
LLR) [3] which can be viewed as a feature space transform anal-
ogous to Equation 1. CMLLR-SAT simply consists of training

on the adapted features. It has been reported [7] that MLLR-
SAT gives improvements on top of CMLLR-SAT; we confirm
this, although our improvements are somewhat smaller.

Section 2 introduces existing methods for SAT training;
Section 3 describes an exact method for SAT training which
avoids storing any per-speaker statistics (but involves statistics
equivalent in size to full-covariance statistics), and Section 4 de-
scribes some more efficient but less exact techniques. Section 5
describes our experimental conditions; Section 6 describes our
results and Section 7 concludes.

2. Implementations of SAT

In [5], various implementation methods for SAT are discussed.
The first one (standard SAT) involves storing on disk standard
diagonal statistics for each speaker independently. In the up-
date phase, all speaker statistics are read in (they must either be
stored in memory or read in twice, once for the mean update and
once for the variance update). First the updated means are com-
puted by maximizing a quadratic objective function for each
mean, and then the variances are computed given the updated
means and the stored statistics. This method is impractical for
large training corpora with many speakers due to excessive use
of disk space and excessive per-speaker computation during the
update phase.

Another method (2-pass SAT) is also discussed. This
method updates the means and variances on two separate passes
over the data. For the means, as in all SAT methods we are max-
imizing a quadratic objective function in the feature dimension
d. The mean-update phase of 2-pass SAT stores on disk the
linear term in this objective function for each mean and also
stores the speaker-specific adaptation matrices and the speaker-
specific counts for each Gaussian. These last two are read from
disk and used together in the mean-update phase to compute the
quadratic term in the objective function for each mean, which is
a matrix to be inverted. From this and the stored linear term the
means are computed. The variance-update phase is simple; we
go over the data and accumulate the diagonal variance of the
observations around the speaker-adapted means. This method
is also inconvenient when the number of speakers is large as
the disk space per speaker is still substantial. The “Fast SAT”
(FSAT) method [6] combines these two passes into one via an
approximation.

Other methods, called Inverse Transform SAT and Least
Squares SAT, are also discussed in [5] but they are not exact
solutions and do not give as good results. Note that the effi-
cient solutions we propose here are also inexact but in a differ-
ent sense: if they do converge they will converge to a maximum
of the likelihood.



3. Direct 2-pass SAT
We will first introduce a fast method of SAT training we call
direct 2-pass SAT. This is an exact method that avoids dump-
ing any speaker-specific statistics at all. The 2 passes of SAT
training relate to the mean and variance respectively. Mixture
weights can be updated on both passes if desired but we will
not describe this since it is trivial. This method is like 2-pass
SAT [5] except we compute the quadratic term in the objective
function for each mean during the accumulation phase rather
than the update phase.

We will write the observations for each speaker s and time
1 ≤ t ≤ Ts as xs(t). The Gaussian posteriors for speaker s and
time t are γj(s, t). We always compute these posteriors using
the most recent speaker-adapted parameters possible (we could
make this explicit using iteration indices but it should be clear).
The count, mean and variance statistics (i.e. the zeroth, first and
second order statistics) for speaker s are:

γ
(s)
j =

PTs

t=1 γ
(s)
j (t) (2)

x
(s)
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PTs

t=1 γ
(s)
j (t)xs(t) (3)

S
(s)
j =

PTs

t=1 γ
(s)
j (t)xs(t)xs(t)

T . (4)

We only store the diagonal of S
(s)
j . In the mean-accumulation

phase, we are accumulating a vector vj and a matrix Mj for
each Gaussian j which are the terms in a quadratic auxiliary
function for its mean:

f(j) = µT
j vj − 0.5µT

j Mjµj (5)
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(s) (7)

µj := vjM
−1
j . (8)

As we process each speaker we store the speaker-specific count
and mean statistics in memory and then at the end of the
speaker’s data we directly increment vj and Mj . Each par-
allel process will dump out vj and Mj to disk. The disk and
memory usage is the same as for full-covariance training. The
computation is O(d3) for each active Gaussian for each speaker,
because of the matrix multiply needed to accumulate Mj . This
is not excessive because we need the same time to compute
the speaker’s MLLR transform itself, using standard approaches
(although note that we could reduce this to O(d2) using ideas
we previously introduced in [10]).

The variance update in this direct 2-pass SAT is the same
as in normal SAT, and is quite simple: we just accumulate the
variance around the adapted mean (we only need the diagonal).

γj =
PS

s=1 γ
(s)
j (9)
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S
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S
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(s)
j µ̂

(s)
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(10)

Σ
2
j d,d

:= (1/γj)Sjd,d (11)

3.1. Direct single-pass SAT

To save a factor of two in speed we can combine the two passes
into a single pass and accumulate the mean and variance statis-
tics simultaneously, as in FSAT [6, 7]. This makes the tech-
nique not provably correct (at least using normal methods), but

the interaction between the mean and variance updates is weak
enough it is hard to construct an example where it would fail
to converge. We can, however show that close to convergence it
would converge the same as a fully correct approach because the
change in the mean affects the updated variance in a quadratic,
not linear way.

4. Diagonal SAT
Diagonal SAT is a modification of the mean update of the above
algorithm (Direct single-pass SAT). In Diagonal SAT we only
store the diagonal of the quadratic term in the mean’s objective
function. This requires that we formulate the quadratic objec-
tive function in terms of the change in the mean rather than the
mean itself, to maintain the correct fixed point. This algorithm
does have the potential for divergence but in practice it seems
very stable. The auxiliary function for each mean is based on
∆j which is the change in µj .

f(j) = ∆T
j vj − 0.5∆T

j Mj∆j (12)
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Mj = diag
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µj := µj + vjM
−1
j (16)

Here the notation diag means keeping the diagonal only of a
matrix and setting other elements to zero. The variance accumu-
lation and update are unchanged (Equations 9 to 11); we do the
variance accumulation at the same time as the mean accumula-
tion. Diagonal SAT requires one and a half times the disk space
of normal ML accumulation and the computation required is
negligible - after storing the diagonal statistics we have to do
an O(d2) computation for each Gaussian active for the speaker
which is less than the O(d3) computation we require on each
iteration to estimate the MLLR transform itself.

4.1. ML-like SAT

ML-like SAT is a very simple form of SAT where we compute
modified mean and variance statistics as for normal ML train-
ing that are constructed so our normal auxiliary function would
have the same gradient w.r.t. the parameters as the SAT auxil-
iary function. This is based on the notion of “weak-sense auxil-
iary functions” introduced in [8].
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xj =
PS

s=1 x̃
(s)
j (19)

Sj =
PS

s=1 S̃
(s)
j . (20)

Note that our variance statistics are constructed such that the
“fake” statistics have the same variance around the Speaker
Independent (SI) mean as the real features do around the SA
mean. The update we use for ML-like SAT is the same as the
normal ML update. Note that there is a potential for negative



variances. In the experiments we report here, we floor these to
a very small value, but it happens relatively rarely (around 1
in 1000 Gaussians if we start from a trained system, or more
if we start from newly initialized mixtures). Note that ML-like
SAT has a natural extension to Extended Baum-Welch based
discriminative training as we can apply this transformation of
statistics to the numerator and denominator statistics indepen-
dently; SAT is known to give improvements when combined
with discriminative training [6, 7].

4.2. Modified ML-like SAT

We also experiment with a modification to the update equations
used in ML-like SAT in which we set the updated variance to
the variance around the old mean rather than the new mean. In
the context of normal ML training this is a valid but suboptimal
update. In ML-like SAT it has the advantage of avoiding neg-
ative variances and possibly associated instabilities. We set the
variance to:

σ2
j d

:=
Sjd,d

γj

− 2µjd
xjd

+ µj
2
d
, (21)

where µj refers to the un-updated mean.

4.3. Overall procedure

The overall procedure for SAT training is as follows. On each
iteration of SAT training, we split the speakers up into sets to
be processed in parallel. A particular parallel process oper-
ates as follows: for each speaker, starting from an unadapted
system it does several iterations (typically 2) of re-computing
the speaker’s MLLR transform and re-computing Gaussian pos-
teriors. We then compute diagonal speaker-specific statistics
(Equations 2 to 4) and use these to store SAT statistics using one
of the various processes described above. Each process dumps
the SAT statistics to disk when it has finished all its speakers.
When all processes are done, the update process sums up the
stored SAT statistics and computes the new model parameters.

5. Experimental Conditions
We test on two different setups, using English and Mandarin
Broadcast News.

On the English side our training data is 50 hours of English
news broadcasts obtained by subsampling the 1996 and 1997
Hub4 training sets (LDC97S44 and LDC98S71 respectively).
Our test set is the Dev04f test set from the DARPA EARS
project, which comprises 3 hours of speech from 6 broadcasts
collected between 15 November and 1 December 2003, and in-
cludes 22.6K words. The language model used for testing is
a 3.3M 4-gram LM trained on a corpus of 335M words. The
features are 13 PLP coefficients spliced across nine frames and
projected using LDA and then STC. We report results for SAT
training on top of speaker-independent (SI) systems and sys-
tems that are speaker-adaptively trained with respect to VTLN
and CMLLR, i.e. systems trained on adapted features. In both
cases we have a small and a large system: the small ones both
have 700 quinphone context dependent states and 5k mixtures
and the larger ones have respectively 1K and 30K for the SI
system and 3K and 50K for the SAT system.

We test with MLLR multiple regression classes; we use a
regression tree with a minimum count of 3000 to estimate up
to 16 transforms. There is no variance adaptation. All SAT
training is with a single MLLR transform with a minimum count
of 300 and minimum number of Gaussians seen of 80. In test

we adapt (unsupervised) on text output from a previous phase of
decoding which did not use SAT models, e.g. on an otherwise
speaker independent system this would be an SI model, or in a
system with VTLN and CMLLR this would be a model trained
on VTLN and CMLLR features.

Our Mandarin system is an ML system adapted with VTLN
and CMLLR built for the DARPA GALE program; the system
architecture is broadly similar to the above but there are 20K
states and 800K Gaussians and 1700 hours of training data. We
report results on the basis of character error rate; the test sets
are not official releases so the numbers may not be comparable
to other sites’ results.

6. Experimental Results

SAT WER, 1 iter MLLR
Iter ML-like Modified Diagonal Direct

SAT ML-like SAT 1-pass SAT
(SI) 41.1% 41.1% 41.1% 41.1%

0 38.4% 38.4% 38.4% 38.4%
1 37.1% 37.2% 37.4% 37.4%
2 37.0% 37.1% 37.3% 37.2%
3 37.1% 37.1% 36.9% 37.0%
4 37.2% 37.1% 36.8% 36.9%

(all) 36.6% 36.6% 37.0% 36.8%
WER, 2 iter MLLR

0 38.4% 38.4% 38.4% 38.4%
4 36.8% 36.9% 36.8% 36.8%

(all) 36.4% 36.3% 36.6% 36.2%
Train likelihood/frame

1 -49.63 -49.63 -49.63 -49.63
2 -48.97 -48.98 -49.01 -49.00
3 -48.83 -48.83 -48.86 -48.85
4 -48.77 -48.76 -48.79 -48.78

(all) -48.62 -48.61 -48.63 -48.62

Table 1: Speaker Independent, small (5k Gaussian)

SAT WER, 1 iter MLLR
Iter ML-like Modified Diagonal Direct

SAT ML-like SAT 1-pass SAT
(SI) 34.1% 34.1% 34.1% 34.1%

0 31.9% 31.9% 31.9% 31.9%
1 30.9% 30.9% 30.8% 31.0%
2 30.9% 30.8% 30.8% 30.9%
3 30.9% 30.8% 30.8% 30.9%
4 30.7% 30.7% 30.7% 30.7%

(all) 30.2% - - -

Table 2: Speaker Independent, normal (30K Gaussian)

Tables 1 and 2 show results from SAT training and MLLR
on otherwise speaker independent systems, small and large ones
respectively. In Table 1 we get very impressive improvements
from SAT, up to about 2% absolute. Without SAT, MLLR re-
duces WER from 41.1% to 38.4%, and this is the same whether
we do one iteration of MLLR in test time or two iterations. For
SAT-adapted system, the iteration number on the left shows how
many iterations of SAT training we did, between 1 and 4 itera-
tions starting from a non-SAT system; “(all)” means we trained
the system from fixed state alignments (20 iterations), doing



SAT on each iteration except the first. We can see that doing
SAT training from the start this way gives more improvement.
We can also see that when we are using SAT, it helps to do two
iterations of MLLR adaptation in test time; the text used for
adaptation is not recomputed, only the state and Gaussian-level
alignment are changed as we re-adapt the system. The most im-
provement we get from SAT is 2.2% absolute, from a non-SAT
system at 38.4% to a Direct 1-pass SAT system trained with
SAT from the start with two iterations of MLLR in test time,
which takes us to 36.2%.

With a more normal sized otherwise unadapted system in
Table 2, we also get substantial improvements from SAT. We
do not test multiple MLLR iterations here, but we get 1.2% ab-
solute improvement from doing 4 iterations of SAT using any of
the methods we test, or 1.7% absolute if we train with ML-like
SAT from the start.

SAT WER, 1 iter MLLR
Iter ML-like Modified Diagonal Direct

SAT ML-like SAT 1-pass SAT
(SI) 33.9% 33.9% 33.9% 33.9%

0 33.2% 33.2% 33.2% 33.2%
1 33.1% 33.1% 30.8% 33.0%
2 33.0% 32.9% 32.8% 33.0%
3 32.8% 32.8% 32.9% 32.9%
4 32.8% 32.7% 32.8% 32.8%

Table 3: Speaker Adapted, small (5k Gaussian)

SAT WER, 1 iter MLLR
Iter ML-like Modified Diagonal Direct

SAT ML-like SAT 1-pass SAT
(SI) 26.0% 26.0% 26.0% 26.0%

0 25.3% 25.3% 25.3% 25.3%
1 25.2% 25.1% 25.2% 25.2%
2 25.2% 25.2% 25.2% 25.1%
3 25.1% 25.1% 25.1% 25.0%
4 25.1% 25.1% 25.1% 25.0%

(all) 24.9% - 24.8% -
WER, 2 iter MLLR

0 25.4% 25.4% 25.4% 25.4%
(all) 24.9% - 24.9% -

Table 4: Speaker Adapted, normal (50K Gaussian)

Tables 3 and 4 show SAT on a system with constrained
MLLR (CMLLR) and VTLN applied both in train and test.
With the smaller system (Table 3), MLLR gives us 0.7% abso-
lute improvement without SAT, and with four iterations of SAT
we get another 0.4% of improvement, regardless of the train-
ing technique. With the larger system, MLLR gives us 0.7%
absolute improvement but four iterations of SAT give us only a
further 0.2% to 0.3% absolute improvement. However, by do-
ing SAT on all iterations the improvement from SAT increases
to 0.4% to 0.5%. In this case, doing two iterations of MLLR
in test do not seem to give us any further improvement (in fact,
it hurts slightly). This may be because MLLR is not making
enough difference to affect the alignments substantially.

Table 5 shows Diagonal SAT on a Mandarin system, also
with VTLN and CMLLR. Averaging over the test sets, we get
about 0.2% improvement from SAT. In another experiment (not

SAT CER, 2 iter MLLR, Diagonal SAT
Iter Dev07 Eval06 Eval07
0 15.2% 20.7% 13.5%
1 15.1% 20.6% 13.3%
2 15.1% 20.4% 13.2%
3 15.1% 20.4% 13.2%
4 15.0% 20.4% 13.2%

Table 5: Mandarin, speaker adapted (800K Gaussian)

shown), we saw very little improvement (<0.1%) from doing
one iteration of ML-like SAT on a system built from scratch on
top of discriminatively trained features.

7. Conclusions
We have presented various efficient and simple methods of SAT
training. All the approaches give roughly the same performance
so for efficiency and simplicity our recommendation is to use
what we call Modified ML-like SAT or the more exact Diago-
nal SAT. We have shown the importance of SAT training where
MLLR is the only form of adaptation used, and have confirmed
the result from [7] that even when a system is trained and tested
with VTLN and CMLLR, SAT can still give improvements. We
have also shown that if possible SAT should be applied from
early stages of training, and that on SAT systems we may need
two iterations of MLLR estimation in test time. The compute
time is dominated by the computation of the MLLR transform,
so in future work we may try to speed this up [10] or recompute
it less often. One unanswered question is whether it is important
to use multiple regression classes in train as well as test.
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