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ABSTRACT

This document contains some notes on a proposed mechanism for

MoND-like gravity. Rather than using a non-local Lagrangian, we

assign spacetime a small mass that depends on the local curvature

(or in Newtonian terms, the tidal acceleration). This naturally gives

a gravitational acceleration that increases as 1/r for very large r,

similar to MoND. However, for smaller masses this model predicts

that Newtonian behavior would persist at much larger length-scales

than MoND does.

Index Terms— Gravity, MoND

1. INTRODUCTION

MoND– a form of gravity that decreases as 1/r once the gravita-

tional acceleration is below a critical threshold– has been proposed

as a possible alternative to dark matter but has not been considered

mainstream because it has been hard to see how it could arise from

physics. We will show that it is possible to obtain a form of grav-

ity with quite similar characteristics to MoND, if we assign a mass

to spacetime that is curved. In our scheme the boundary between

normal and MoND-like gravity depends on the value of the tidal ac-

cleration in units of acceleration per meter, or s−2, which is locally

measurable, rather than acceleration in ms−2 (which is not).

2. TIDAL ACCLERATION

We need a definition of tidal accleration that is covariant so that the

GR extension can be done. I believe tidal accleration is known to be

covariant. There may be a number of ways to reduce tidal accleration

to a scalar, and in these notes we won’t distinguish between them.

For now, just let the tidal accleration, or curvature, at a moment in

spacetime be some quantity u such that, at radius r from an isolated

mass m,

u = Gm/r3 (1)

with G the gravitational constant. The units of u are acceleration

divided by distance, or s−2.

As far as the rest of this document is concerned, we just need to

know that u has the property above.

3. EFFECTIVE MASS

An isolated mass m will have a halo of extra vacuum density around

it. At a distance r from the mass, the effective mass will be m plus

the extra mass from the vacuum inside a sphere of radius r. Remem-

ber that inside a hollow sphere we feel no gravitational accleration,

but outside the sphere it behaves as if the mass is located at the cen-

ter. Let the effective mass at radius r be

effective mass at r = mf(x(r)) (2)

where x(r) is a scaled version of the radius, defined as

x = αm−1/3r, (3)

and f is some function satisfying f(0) = 1 that becomes similar

to f(x) = x for large x, giving a MoND-like property. The sole

adjustable parameter of our model is α. We will also have some

choices about the functional form of f , subject to some constraints

that will become clear later. The choice to insert a factor of m−1/3

is dictated by the need for local measurability.

4. TIDAL ACCLERATION TO DENSITY

Let the tidal acceleration u, in units of s−2, be as discussed in Sec-

tion 2. Let us define a rescaled tidal acceleration

C =
u

Gα3
(4)

where G is the gravitational consant; this will keep our equations

simple. (We use the letter C for curvature; we used u for for the un-

scaled tidal acceleration to avoid confusion with the speed of light

c). At a radius r from mass m, if we were to ignore the extra vacuum

density inside r we would have

C =
u

Gα3
=

m

r3α3
=

1

x3
. (5)

but this needs to be corrected for the vacuum density inside the

sphere, which makes the central mass appear heavier by a factor of

f(x), so:

C =
f(x)

x3
. (6)

We introduce a scalar function H(·) that gives the density of the

vacuum as a function of the tidal acceleration. The relationship will

be:

density of vacuum =
α3

4π
H(C), (7)

where the constant factor α3/4π was introduced for mathematical

convenience but could easily be absorbed into H . The idea is that

H would reflect some physical process that gives curved vacuum

a density, perhaps related to the paths taken by ’phantom particles’

arising from quantum mechanics.
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5. SETTING UP EQUATION FOR H

We can solve for H(·) by considering an isolated mass m, and giving

the vacuum the density that’s required to make the effective mass at

a particular radius vary as mf(x). (x varies with r).

We need to work out the mass of the vacuum in a hollow sphere

at radius r and thickness dr. With x = αm−1/3r, the density of the

vacuum is:

density =
α3

4π
H

(

f(x)

x3

)

(8)

(in kg/m3). The volume of the hollow sphere is 4πr2dr, so:

mass of hollow sphere = α3r2H

(

f(x)

x3

)

dr. (9)

The amount by which the effective mass of our object is needs to

vary from r to r + dr is

d

dr
mf(x) = mf ′(x)

dx

dr
(10)

Setting this to equal the mass of the hollow sphere computed above,

we have:

mf ′(x)
dx

dr
= α3r2H

(

f(x)

x3

)

(11)

mf ′(x)αm−1/3 = α3r2H

(

f(x)

x3

)

(12)

f ′(x) = x2H

(

f(x)

x3

)

. (13)

6. CONDITIONS FOR H TO EXIST

Before trying to solve Equation (13) we would like to point out some

trivial solutions and limits. The solution that corresponds to Newto-

nian gravity is f(x) = 1, H(C) = 0. If we want f(x) → x as

x → ∞ (as in MoND), then (13) becomes 1 = x2H
(

x
x3

)

for large

x, which requires H(C) → C for small C.

A fairly general condintion for (13) to be solvable, is for the

function

g(x) =
f(x)

x3
(14)

to be invertible, i.e. for the function g−1(C) to exist: in that case we

can let

H(C) =
f ′(g−1(C))

g−1(C)2
. (15)

Since f(x) → x for large x, g(x) approaches 1

x2 for large x, im-

plying g′(x) < 0. We can ensure g(·) is invertible by requiring

g′(x) < 0 for all x > 0. So

g′(x) =
f ′(x)

x3
− 3

f(x)

x4
< 0 (16)

for x > 0. Multiplying by x4 and rearranging,

xf ′(x) < 3f(x). (17)

All the functions f(·) that we are considering satisfy f(x) ≥ x and

f ′(x) ≤ 1, satisfying (17), so invertibility of g is not a problem. We

can, however, rule out equations where f(x) rises “too fast” near

x = 0, for instance f(x) =
√

(x) + x.

7. DISCUSSION ON CHOICE OF F

It seems to be difficult to find easy functional forms for both f and

H simultaneously. We considered various forms for f , including

f(x) = 1+x, f(x) = 1+
√
1 + x2, and others. We are inclined to-

wards f(x) = 1+x for its simplicity, because it leads to a relatively

simple relationship between density and curvature, and because it

lets the density increase as fast as possible (in terms of powers of

x) for small x. The reason we feel this is attractive is because it

increases the chance that this mechanism could get rid of the singu-

larity inside black holes. All our analysis is in the Newtonian regime

and in this case it’s not possible for a vanishingly small central mass

to have a large effective mass in a finite radius, but the hope is that

this might change due to relativistic effects.

8. SOLUTIONS FOR H

We’ll consider a solution for H in the case where f(x) = 1 + x.

Equation (13) becomes:

1 = x2H

(

1 + x

x3

)

. (18)

Remember that H returns a density; this density needs to equal 1/x2

to satisfy (18). We can rewrite this as:

H
(

D +D3/2
)

= D, (19)

where D = 1

x2 is the (scaled) density. So H is the inverse function

of g(D) = D +D3/2. This function is clearly invertible for D ≥ 0
because it is monotonically increasing. Unfortunately it does not

have a particuarly nice functional form; the functional form arises

from the formulas for solving cubic equations, which involves a dif-

ference of imaginary numbers (canceling to leave a real result). The

equation does not look particularly enlightening so we won’t write it

down here.

9. COSMOLOGICAL IMPLICATIONS

We don’t have the time or the right background to do any detailed

checks whether this model correctly predicts observations, but we

would like to point out that on smaller scales, this model predicts

closer-to-Newtonian behavior than MoND does.

It has been estimated that the total (DM + baryonic) of the galaxy

within 129,000 light years from the center is 1.5 ∗ 1012M⊙ (M⊙ is

the mass of the Sun), while the baryonic mass of the galaxy is about

1.7 ∗ 1011M⊙.

Attributing the excess to our model, that would mean f(x) =
1 + x ≃ 8.8 at 129,000 ly. The distance at which f(x) = 2, i.e.

the dark and baryonic masses are the same (assuming all the bary-

onic mass is located in the center) would be 129,000 ly / 7.8 ≃
16,000 ly. This length-scale varies as m1/3 with the mass of the

central object, so the corresponding length-scale for our Sun would

be 16, 000ly × (1.7× 1011)−1/3 = 2.8ly ≃ 1pc. That is: the grav-

itational acceleration at 1 parsec from the Sun would be double the

Newtonian prediction. This is different from MoND which predicts

non-Newtonian gravity at a much smaller distance of about 0.03pc.

Applying this same reasoning to a single molecule of hy-

drogen, the “critical distance” at which f(x) = 2 would equal

1pc ∗ 3
√

MH2
/M·, or 1pc ∗ 3

√

3× 10−27/2× 1030, which comes

to 3.5mm. In a cloud of hydrogen gas the tidal forces from differ-

ent hydrogen atoms will tend to cancel out at large scales, but we
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can apply our model out to around the distance by which hydrogen

atoms are separated, e.g. at around 1 atom per cm3 (the approximate

density of H2 gas in our galaxy) we might get around a factor of 3

in mass from this mechanism.

In fact, it’s not hard to show that the effective mass per unit vol-

ume of evenly distributed objects depends on the average density

but not on the size of the objects; this should be true from atomic to

galactic scales. If dtot is the total baryonic plus gravitational den-

sity and db is the baryonic density, a system will tend to obey the

relationship dtot = db(1 + d
−1/3
b ) (given appropriate units).
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