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ABSTRACT

This paper describes a lattice-based framework for maximum mu-
tual information estimation (MMIE) of HMM parameters which
has been used to train HMM systems for conversational telephone
speech transcription using up to 265 hours of training data. These
experiments represent the largest-scale application of discriminative
training techniques for speech recognition of which the authors are
aware, and have led to significant reductions in word error rate for
both triphone and quinphone HMMs compared to our best models
trained using maximum likelihood estimation. The use of MMIE
training was a key contributer to the performance of the CU-HTK
March 2000 Hub5 evaluation system.

1 INTRODUCTION

The model parameters in HMM based speech recognition sys-
tems are normally estimated using Maximum Likelihood Estimation
(MLE). If certain conditions hold, including model correctness, then
MLE can be shown to be optimal. However, when estimating the
parameters of HMM-based speech recognisers, the true data source
is not an HMM and therefore other training objective functions, in
particular those that involve discriminative training, are of interest.

During MLE training, model parameters are adjusted to increase
the likelihood of the word strings corresponding to the training ut-
terances without taking account of the probability of other possible
word strings. In contrast to MLE, discriminative training schemes,
such as Maximum Mutual Information Estimation (MMIE) which is
the focus of this paper, take account of possible competing word hy-
potheses and try and reduce the probability of incorrect hypotheses.

Discriminative schemes have been widely used in small vocabu-
lary recognition tasks, where the relatively small number of compet-
ing hypotheses makes training viable. For large vocabulary tasks,
especially on large datasets there are two main problems: generali-
sation to unseen data in order to increase test-set performance over
MLE; and providing a viable computation framework to estimate
confusable hypotheses and perform parameter estimation.

This paper is arranged as follows. First the details of the MMIE
objective function are introduced. Then the lattice-based framework
used for a compact encoding of alternative hypotheses is described
along with the Extended Baum-Welch (EBW) algorithm for updat-
ing model parameters. Methods to enhance generalisation perfor-
mance of MMIE trained systems are also discussed. Sets of ex-
periments for evaluating the techniques on conversational telephone
speech transcription are presented that show how MMIE training can
be successfully applied over a range of training set sizes; the effect
of methods to improve generalisation; and the interaction of MMIE
with maximum-likelihood adaptation.

2 MMIE CRITERION

MMIE training was proposed in [1] as an alternative to MLE and
maximises the mutual information between the training word se-
quences and the observation sequences. When the language model
(LM) parameters are fixed during training (as they are in this paper
and in almost all MMIE work in the literature), the MMIE criterion
increases the a posteriori probability of the word sequence corre-
sponding to the training data given the training data.
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with corresponding transcriptions ��� � � , the MMIE objective func-
tion is given by
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where 1 2 is the composite model corresponding to the word se-
quence � and

5�� � !
is the probability of this sequence as determined

by the language model. The summation in the denominator of (1) is
taken over all possible word sequences

;� allowed in the task and it
can be replaced by

,.- � ���</ 13=�> ? !�# $ 92 ,.- � ���</ 1 92 !65��";� !
(2)

where 13=�>@? encodes the full acoustic and language model used in
recognition.

It should be noted that optimisation of (1) requires the maximi-
sation of the numerator term , - � ���0/ 1A2B4 ! , which is identical to
the MLE objective function, while simultaneously minimising the
denominator term ,.- � �C/ 13=�> ? ! .

3 EXTENDED BAUM-WELCH
ALGORITHM

The most effective method to optimise the MMIE objective function
for large data and model sets is the Extended Baum-Welch (EBW)
algorithm [3] as applied to Gaussian mixture HMMs [6].

The update equations for the mean of a particular dimension of
the Gaussian for state D , mixture component E , F(GH and the cor-
responding variance, I&JGH (assuming diagonal covariance matrices)
can be re-estimated by

;FBGH #LKNM ?O�PGH � � !RQ M =�>@?GSH � � !�TVUXW FBGH
KNY ?O�PGSH Q Y =�> ?GH TZU[W (3)

;I JGH # K M ?O�PGH � � J !&Q M =�>@?GSH � � J ! T U\W]� I JGSH U F JGH !
K^Y ?SO�PGSH Q Y =�>@?GSH T_UXW Q`;F JGSH (4)



In these equations, the M G � H � � !
and M G � H � � J ! are sums of data and

squared data respectively, weighted by occupancy, for mixture com-
ponent E of state D , and the Gaussian occupancies (summed over
time) are Y GH . The superscripts ����� and

��� � refer to the model cor-
responding to the correct word sequence, and the recognition model
for all word sequences, respectively.

It is important to have an appropriate value for
W

in the update
equations, (3) and (4). If the value set is too large then training
is very slow (but stable) and if it is too small the updates may not
increase the objective function on each iteration. A useful lower
bound on

W
is the value which ensures that all variances remain

positive. Using a single global value of
W

can lead to very slow
convergence, and in [9] a phone-specific value of

W
was used.

In preliminary experiments, it was found that the convergence
speed could be further improved if

W
was set on a per-Gaussian

level, i.e. a Gaussian specific
W GSH was used. It was set at the max-

imum of i) twice the value necessary to ensure positive variance
updates for all dimensions of the Gaussian; or ii) the denominator
occupancy Y =�>@?GSH .

The mixture weight values were set using a novel approach de-
scribed in [7]. The exact update rule for the mixture weights is
not too important for the decision-tree tied-state mixture Gaussian
HMMs used in the experiments reported here, since the Gaussian
means and variances play a much larger role in discrimination.

4 IMPROVING MMIE GENERALISATION

An important issue in MMIE training is the ability to generalise to
unseen test data. While MMIE training often greatly reduces train-
ing set error from an MLE baseline, the reduction in error rate on an
independent test set is normally much less, i.e., compared to MLE,
the generalisation performance is poorer. Furthermore, as with all
statistical modelling approaches, the more complex the model, the
poorer the generalisation. Since fairly complex models are needed to
obtain optimal performance with MLE, it can be difficult to improve
these with conventional MMIE training. We have considered two
methods of improving generalisation that both increase the amount
of confusable data processed during training: weaker language mod-
els and acoustic model scaling.

In [8] it was shown that improved test-set performance could be
obtained using a unigram LM during MMIE training, even though
a bigram or trigram was used during recognition. The aim is to
provide more focus on the discrimination provided by the acoustic
model by loosening the language model constraints. In this way,
more confusable data is generated which improves generalisation.
An unigram LM for MMIE training is investigated in this paper.

When combining the likelihoods from an HMM-based acoustic
model and the LM it is usual to scale the LM log probability. This
is necessary because, primarily due to invalid modelling assump-
tions, the HMM underestimates the probability of acoustic vector
sequences. An alternative to LM scaling is to multiply the acous-
tic model log likelihood values by the inverse of the LM scale factor
(acoustic model scaling). While this produces the same effect as lan-
guage model scaling when considering only a single word sequence
as for Viterbi decoding, when likelihoods from different sequences
are added, such as in the forward-backward algorithm or for the
denominator of (1), the effects of LM and acoustic model scaling
are very different. If language model scaling is used, one particu-
lar state-sequence tends to dominate the likelihood at any point in
time and hence dominates any sums using path likelihoods. How-
ever, if acoustic scaling is used, there will be several paths that have

fairly similar likelihoods which make a non-negligible contribution
to the summations. Therefore acoustic model scaling tends to in-
crease the confusable data set in training by broadening the posterior
distribution of state occupation Y =�>@?GSH that is used in the EBW update
equations. This increase in confusable data also leads to improved
generalisation performance.

5 LATTICE-BASED MMIE TRAINING

The parameter re-estimation formulae presented in Section 3 require
the generation of occupation and weighted data counts for both the
numerator terms which rely on using the correct word sequence and
the denominator terms which use the recognition model. The cal-
culation of the denominator terms directly is computationally very
expensive and so, in this work and as suggested in [9], word lattices
are used to approximate the denominator model.

The first step is to generate word-level lattices, normally using
an MLE-trained HMM system and a bigram LM appropriate for the
training set. This step is normally performed just once and for the
experiments in Section 6 the word lattices were generated in about
5x Real-Time (RT).1

The second step is to generate phone-marked lattices which label
each word lattice arc with a phone/model sequence and the Viterbi
segmentation points. These are are found from the word lattices
and a particular HMM set, which may be different to the one used
to generate the original word-level lattices. In our implementation,
these phone marked lattices also encode the LM probabilities used in
MMIE training which again may be different to the LM used to gen-
erate the original word-level lattices. This stage typically took about
2xRT to generate triphone-marked lattices for the experiments in
Section 6, although the speed of this process could be considerably
increased.

Given the phone-marked lattices for the numerator and denom-
inator of each training audio segment, the lattice search used here
performs a full forward-backward pass at the state-level constrained
by the lattice and the statistics needed for the EBW updates accu-
mulated. Pruning is performed by using the phone-marked lattice
segmentation points extended by a short-period in each direction.2

The search was also optimised as far as possible by combining re-
dundantly repeated models which occur in the phone-marked lattice.
Typically after compaction, the method requires about 1xRT per it-
eration for the experiments in Section 6.

6 MMIE EXPERIMENTS ON HUB5 DATA

This section describes a series of MMIE training experiments using
the Cambridge University HTK (CU-HTK) system for the transcrip-
tion of conversational telephone data from the Switchboard and Call
Home English corpora (“Hub5” data). These experiments were per-
formed in preparation for the NIST March 2000 Hub5 Evaluation.
Details of the March 2000 CU-HTK Hub5 system can be found in
[5].

The experiments investigated the effect of different training set
and HMM set sizes and types; the use of acoustic likelihood scal-
ing and unigram LMs in training and any possible interactions be-
tween MMIE training and maximum likelihood linear regression-
based adaptation.

1All run times are measured on an Intel Pentium III running at 550MHz.
2Typically 50ms at both the start and end of each phone.



6.1 Basic CU-HTK Hub5 System
The CU-HTK Hub5 system is a continuous mixture density, tied-
state cross-word context-dependent HMM system based on the HTK
HMM Toolkit. The full system operates in multiple passes, us-
ing more complex acoustic and language models and unsupervised
adaptation in later passes.

Incoming speech is parameterised into cepstral coefficients and
their first and second derivatives to form a 39 dimensional vector
every 10ms. Cepstral mean and variance normalisation and vocal
tract length normalisation is performed for each conversation side in
both training and test.

The HMMs are constructed using decision-tree based state-
clustering and both triphone and quinphone models can be used. All
experiments here used gender independent HMM sets. The pronun-
ciation dictionary used in the experiments discussed below was for
either a 27k vocabulary (as used in [4]) or a 54k vocabulary and the
core of this dictionary is based on the LIMSI 1993 WSJ lexicon. The
system uses word-based N-gram LMs estimated from an interpola-
tion of Hub5 acoustic training transcriptions and Broadcast News
texts. In the experiments reported here, trigram LMs are used unless
otherwise stated.

6.2 Experiments with 18 Hours Training
Initially we investigated MMIE training using the 18 hour BBN-
defined Minitrain corpus with an HMM set using 3088 speech states
and 12 Gaussian/state HMMs, which were our best MLE trained
models. Lattices were generated on the training set using a bigram
LM. The bigram 1-best hypotheses had a 24.6% word error rate
(WER) and a Lattice WER (LWER) of 6.2%.

MMIE %WER
Iteration Acoustic Scaling LM Scaling

0 (MLE) 50.6 50.6
1 50.2 51.0
2 49.9 51.3
3 50.5 51.4
4 50.9 –

Table 1: 18 hour experiments with 12 mixture component models
(eval97sub): comparison of acoustic model and LM scaling.

The Minitrain 12 Gaussian/state results given in Table 1 compare
acoustic and language model scaling for several iterations of MMIE
training on the eval97sub test set (a subset of the 1997 Hub5 evalu-
ation). It can be seen that acoustic scaling helps avoid over-training
and the best WER is after 2 iterations. The training set lattices re-
generated after a single MMIE iteration gave a WER of 16.8% and
a LWER of 3.2%, showing that the technique is very effective in
reducing training set error. However, it was found that these regen-
erated lattices were no better to use in subsequent training iterations
and so all further work used just the initially generated word lattices.

The advantage of MMIE training for the 12 Gaussian per state
system is small and so the same system with 6 Gaussians/state was
trained. The results in Table 2 and again show the best performance
after two MMIE iterations. Furthermore the gain over the MLE sys-
tem is 1.7% absolute if a bigram LM is used and 1.9% absolute if a
unigram LM is used: the 6 Gaussian per state MMIE-trained HMM
set now slightly outperforms the 12 Gaussian system. Furthermore
it can be seen that using a weakened LM (unigram) improves per-
formance a little.

MMIE %WER
Iteration Lattice Bigram Lattice Unigram

0 (MLE) 51.5 51.5
1 50.0 49.7
2 49.8 49.6
3 50.1 50.0
4 50.8 –

Table 2: 18 hour experiments with 6 mixture component models
(eval97sub): comparison of lattice LMs.

6.3 Experiments with 68 Hours Training

The effect of extending the training set to the 68 hour h5train00sub
set [5] was investigated next using an HMM system with 6165
speech states and 12 Gaussians/state. Tests were performed on both
the eval97sub and the 1998 evaluation set (eval98). In this case the
phone-marked denominator lattices had a LWER of 7.4%.

MMIE %WER
Iteration eval97sub eval98

0 (MLE) 46.0 46.5
1 43.8 45.0
2 43.7 44.6
3 44.1 44.7

Table 3: Word error rates on eval97sub and eval98 using
h5train00sub training.

The results in Table 3 show that again the peak improvement
comes after two iterations, but there is an even larger reduction in
WER: 2.3% absolute on eval97sub and 1.9% absolute on eval98.
The word error rate for the 1-best hypothesis from the original bi-
gram word lattices measured on 10% of the training data was 27.4%.
The MMIE models obtained after two iterations on the same portion
of training data gave an error rate of 21.2%, so again MMIE pro-
vided a very sizeable reduction in training set error.

6.4 Triphone Experiments with 265 Hours
Training

The good performance on smaller training sets led us to investi-
gate MMIE training using all the available Hub5 data: the 265 hour
h5train00 set. The h5train00 set contains 267,611 segments and nu-
merator and denominator word level lattices were created for each
trained segment, and from these, phone-marked lattices were gen-
erated. The HMMs used here had 6165 speech states and 16 Gaus-
sians/state.

MMIE %WER
Iteration eval97sub eval98

0 (MLE) 44.4 45.6
1 42.4 43.7

1 (3xCHE) 42.0 43.5
2 41.8 42.9

2 (3xCHE) 41.9 42.7

Table 4: Word error rates when using h5train00 training with and
without CHE data weighting (3xCHE).



We also experimented with data-weighting with this setup during
MMIE training. The rationale for this is that while the test data sets
contain equal amounts of Switchboard and CHE data, the training
set is not balanced. Therefore we gave a 3x higher weighting to CHE
data during training. The results of these experiments on both the
eval97sub and eval98 test sets are shown in Table 4. It can be seen
that there is an improvement in WER of 2.6% absolute on eval97sub
and 2.7% on eval98.

Data weighting gives a further small improvement, although in-
terestingly, data weighting for MLE reduces the WER by 0.7% ab-
solute on eval97sub. It might be concluded that the extra weight
placed on poorly recognised data by MMIE training relative to MLE
reduces the need for the data weighting technique.

6.5 Quinphone Model Training
Since the CU-HTK Hub5 system can use quinphone models, we in-
vestigated MMIE quinphone training using h5train00. The decision
tree state clustering process for quinphones includes questions re-
garding

���
phone context and word-boundaries. The baseline quin-

phone system uses 9640 speech states and 16 Gaussians/state.
The quinphone MMIE training used triphone-generated word lat-

tices, but, since the phone-marked lattices were re-generated for
the quinphone models, it was necessary to further prune the word-
lattices. The results of MMIE trained quinphones on the eval97sub
set are shown in Table 5. Note that these experiments, unlike all
previous ones reported here, include pronunciation probabilities.

MMIE %WER
Iteration eval97sub

0 (MLE) 42.0
1 40.4
2 39.9
3 40.1

Table 5: Quinphone MMIE results on eval97sub. CHE data weight-
ing used for MLE baseline.

As with the MMIE training runs discussed above, the largest
WER reduction (2.1% absolute) comes after two iterations of train-
ing. The reductions in error rate are similar to those seen for triphone
models when CHE data weighting is used even though there was ex-
tra pruning required for the phone-marked lattices and there were
rather more HMM parameters to estimate.

6.6 Interaction with MLLR
All the above results used models that were not adapted to the partic-
ular conversation side using maximum likelihood linear regression
(MLLR) [2]. To measure MLLR adaptation performance, MMIE
and MLE models (with data weighting) were used in a full-decode
of the test data, i.e. not rescoring lattices, with a 4-gram language
model. The output from this first pass was used to estimate a global
speech MLLR (block-diagonal mean and diagonal variance) trans-
form using the output from the respective non-adapted pass was used
for adaptation supervision. The adapted models were then used for
a second full-decode pass.

The results in Table 6 show that the MMIE models are 2.1% ab-
solute better than the MLE models without MLLR, and 2.2% better
with MLLR. In this case, MLLR seems to work just as well with

Adaptation % WER eval98
MLE MMIE

None 44.6 42.5
MLLR 42.1 39.9

Table 6: Effect of MLLR on MLE and MMIE trained models.

MMIE trained models: a relatively small number of parameters are
being estimated with MLLR and these global transforms keep the
Gaussians in the same “configuration” as optimised by MMIE.

7 CONCLUSIONS

This paper has discussed the use of discriminative training for large
vocabulary HMM-based speech recognition for a training set size
and level of task difficulty not previously attempted. It has been
shown that 2-3% absolute reductions in word error rates can be ob-
tained for the transcription of conversational telephone speech. The
use of HMMs trained using MMIE was the most significant addition
to the March 2000 CU-HTK evaluation system.
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