
SPAM and full covariance for speech recognition.

Daniel Povey

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

dpovey @ us.ibm.com

Abstract
The Subspace Precision and Mean model (SPAM) is a way

of representing Gaussian precision and mean values in a re-
duced dimension. This paper presents some large vocabulary
experiments with SPAM and introduces an efficient way to op-
timize the SPAM basis. We present experiments comparing
SPAM, diagonal covariance and full covariance models on a
large vocabulary task. We also give explicit formulae for an
implementation of SPAM.

1. Introduction
Most speech recognition systems use mixtures of diagonal
Gaussians, but in in recent years, there have been a number of
attempts to improve variance modeling. These include semi-
tied covariances [1], in which a number of full-rank matrices
each shared among groups of Gaussians, together with diag-
onal variance matrices per Gaussian; and EMLLT [2], where
the full covariance is represented in a reduced dimension as a
weighted sum of rank-one matrices. A technique that appears
to outperform both of these is the Subspace Precision and Mean
model (SPAM) [3], introduced at IBM and used successfully
elsewhere [5]. In SPAM, each covariance is represented as a
weighted sum over D globally shared full-rank matrices, where
D is not necessarily the same as the feature dimension d.

In this paper, we provide explicit formulae for the ini-
tialization and optimization of the SPAM basis and the per-
Gaussian coefficients, without the requirement for a numeri-
cal optimization package as originally used [3]. We also re-
port experiments on a large vocabulary task which shows that
SPAM can give about as good performance as a full-covariance
model while requiring computation comparable to a diagonal-
covariance model.

2. SPAM
SPAM [3] is a way of representing precision matrices in a re-
duced dimension, so that for Gaussian j,

Pj =
D

X

k=1

λk
j Sk (1)

where λk
j are coefficients per Gaussian and Sk are shared ba-

sis matrices. D can be less than, equal to or greater than the
dimension d of the features.

3. SPAM basis computation
For initialization and optimization of the SPAM basis, for effi-
ciency we use a subset of the Gaussians, selecting the d2 Gaus-
sians with the largest counts. We use these Gaussians without

This work was funded by DARPA contract HR0011-06-2-0001

any weighting by count for basis optimization, i.e. setting their
counts cj to the same value. It is not clear whether this is the
best approach.

3.1. Initial approximation

The first step in optimizing the SPAM auxiliary function is to
get a good initial approximation for the basis matrices Sk. As
in [3], this is done by means of a quadratic approximation which
reduces the problem to a PCA problem in dimension d(d+1)/2
where d is the feature dimension. The optimization of the basis
requires full covariance statistics. The auxiliary function F is a
sum over Gaussians j:

F =

J
X

j=1

−0.5cj (tr(PjΣj)) + 0.5 log det(Pj) (2)

This function has its maximum when for each j, Pj =
Σ

−1
j ; the second gradient arises from the log determinant term

0.5 log det(Pj). If we change Pj by a small amount ∆j , the
auxiliary function will change by −0.25cj tr(∆jΣj∆jΣj).
If Σj happened to be a multiple of the unit matrix fjI , this
function would equal −0.25cjf

2vec(∆j)
T vec(∆j) where

vec(M) means appending the rows of a matrix to form a vector.
This is the key to our PCA method of initializing the SPAM ba-
sis, and only differs from the one in [3] by the constant factors
fj .

3.1.1. Normalization

Using Σavg =
PJ

j=1
cjΣj

P

J
j=1

cj
, we compute a symmetric normaliz-

ing matrix N = Σ
−1/2
avg Then for all the variances we set

Σ
′

j = NΣjN (3)

We do all computations with the normalized variances Σ
′

j and
then at the end after computing the normalized basis matrices
S′

k and the coefficients λk
j we can do the reverse normalization

Sk = N
−1

S
′

kN
−1. (4)

The optimization uses the projected-space precisions P ′

j =
PD

k=1 λk
j S′

k.
To reduce the computation we vectorize the matrices in a

special way taking advantage of the fact that they are symmet-
ric. Let vec′(A) be a splicing together of the lower triangle of
A where all the off-diagonal elements are first scaled by

√
2;

it returns a vector of size d ∗ (d + 1)/2 for a d by d matrix.
This preserves the distance measure and can be thought of as a
rotation in the space of size d2, followed by discarding dimen-
sions that are always zero for symmetric matrices. Then we can
define the opposite function mat′(v) which splices together a
vector into a lower triangular matrix, multiplies the off diagonal
elements by 1/

√
2 and copies the lower triangle to the upper

triangle.



3.1.2. Principal components analysis

The computation of the initial basis involves computing the
d(d + 1)/2 by d(d + 1)/2 scatter matrix

X =

PJ
j=1 cjf

2
j vec′(Σ′

j)vec′(Σ′

j)
T

PJ
j=1 cj

(5)

where fj =
tr(Σ′

j)

d
. The k′th basis matrix S′

k will now equal
mat′(vk), if vk is the k’th eigenvector of X . Note that the basis
elements S′

k are unit and orthogonal (this is easiest to visualize
in their vectorized form). This will be useful when optimizing
the coefficients. For convenience in optimizing the coefficients
we make a modification to Equation 5 that ensures that the first
basis matrix is positive definite and approximately equals the
average of Σ

′

j :

X
′ = X + 1000vec′(I)vec′(I)T . (6)

We use the principal components of X ′.

3.2. Iterative optimization

Optimization of the SPAM basis is done alternately with the op-
timization of the coefficients (which is described in Section 4)
The approach is to find the gradient of the auxiliary function
w.r.t. each basis matrix S′

j , given fixed coefficients λk
j , and find

an approximation to the second gradient which allows us to find
a reasonable update direction; we then calculate the optimal step
size in that direction based on the exact second gradient, which
can be computed exactly in an efficient way. But some of the
precisions P ′

j may no longer be positive definite with the new
basis. Rather than limit the update to very small step sizes to
prevent this, we recalculate the coefficients and check whether
(with the updated coefficients) the auxiliary function has im-
proved. If not, we halve the step size and try again. However,
in practice this has never been observed to be necessary. This
procedure converges in ten or so iterations. After each update
we orthogonalize and normalize the basis matrices (viewed as
vectors as described above).

On each iteration, we first calculate the gradient of the aux-
iliary function F (Equation 2) w.r.t. each matrix S′

k,

∂F

∂S′

k

= 0.5
J

X

j=1

cj(P
′−1
j −Σ

′

j). (7)

In a Taylor expansion of the auxiliary function, the
quadratic term arises from expressions of the form
−0.25cj tr(P

−1
j ∆jP

−1
j ∆j), if ∆j is the change in the

precision P ′

j . If the changes in the basis matrices S′

k are Dk,
the quadratic term in the expansion can be expressed as a
function of the matrices Dk as:

−0.25

J
X

j=1

D
X

k=1

D
X

l=1

cjλ
k
j λl

jtr(P
′−1
j DkP

′−1
j Dl). (8)

This introduces dependencies between all matrix elements of all
Sj , which makes the problem intractable. However, we can put
to good use the fact that the typical variance is close to the unit

matrix, and approximate P −1
j as fjI , where fj =

tr(P ′−1

j
I)

d
.

We can also assume that since the SPAM basis was initialized
with PCA, the coefficients λk

j should be fairly uncorrelated be-
tween different dimensions k; assuming that all the variances
are all about equal, any cross terms (k 6= l) in in Equation 8
will be about zero. The simplified quadratic term is now:

−0.25
D

X

k=1

cjλ
k
j

2
f2

j tr(DkDk) (9)

This is just a constant times a euclidean distance in the vector-
ized form of each matrix S′

k, and the update rule becomes gra-
dient descent with a different speed 1/Fk for each value of k,

where the factors Fk are computed as Fk =
PJ

j=1 0.5cjλ
k
j
2
f2

j

(this includes a factor of 2 because we want the second gradient,
not the coefficient of the quadratic term), and using the expres-
sion for the gradients in Equation 7 the proposed changes to Sk

become
Dk =

PJ
j=1 cj(P

′−1
j − Σ

′

j)

Fk
. (10)

However, this update amount may not converge because
we made some assumptions to get this rule. Instead the
change will be cDk for a shared constant c, where we
work out c for optimum improvement as follows. The first-
order term in c in the auxiliary function is c

PK
k=1 Dk

∂F
∂Sk

,

with ∂F
∂Sk

given in Equation 7. The second order term

is −c2 PJ
j=1 0.25cj tr(P

′−1
j ∆jP

′−1
j ∆j), where ∆j =

PD
k=1 λk

j Dk. The optimal value given the full quadratic ap-
proximation to the auxiliary function is:

c =

PK
k=1 Dk

∂F
∂S′

k
PJ

j=1 0.5cj tr(P ′−1
j ∆jP ′−1

j ∆j)
. (11)

We can now update the basis by setting S′

k := S′

k + cDk and
re-orthogonalize and normalize it by setting, for k = 1 . . . D,
S′

k := norm(S′

k −
Pk−1

l=1 S′

ltr(S
′

lS
′

k)), where norm(A) =

A/
p

tr(AA), i.e. ensuring that the vectorized form of the ma-
trix has unit length and that they are all orthogonal.

After each update of the basis matrices we re-optimize
the coefficients λk

j . For efficiency we start the optimization
from the previously optimized values λk

j for any Gaussian j

for which the old λk
j gives a positive definite matrix with the

new basis. After optimizing the coefficients we check that the
auxiliary function has improved compared to its value before
optimizing the basis; if it has not, as noted above, we could re-
duce the update amount by half and try again but this does not
happen in practice.

4. Coefficients computation
Computing the coefficients λk

j is the most computationally ex-
pensive part of the procedure and for optimizing all the coeffi-
cients in the system (as opposed to the d2 largest-count Gaus-
sians used to optimize the basis) we parallelize the computation.

4.1. Initial estimate of coefficients

For each Gaussian we first obtain an initial estimate of the coef-
ficients. Let the vector of coefficients λk

j for some j be lj . This
first step relies on the unit, orthogonal nature of the basis. Let
M be a k by d(d + 1)/2 matrix where each row

mk = vec′(S′

k)T . (12)
The initial estimate of the coeffiecient vector is lj :=

Mvec′(Σ′−1
j ). If with these coefficients, P ′

j is not positive
definite (as will occasionally happen), we must find some other
coefficients that give a positive definite precision matrix and
start with them intead. If the first basis matrix S1 is positive
definite (as it will definitely be if this is the first iteration of
optimizing the SPAM basis and this is the initial estimate ob-
tained as in Section 3.1) we do this by setting to zero all but the
first element of lj . If S1 is not positive definite (and this has
not been observed in practice but it is a theoretical possibilitiy)
we can find some other set of coefficients lj′ from some other
Gaussian j′, as optimized on the previous iteration, that gives a
positive definite matrix with the current basis; and set lj to that.



4.2. Iterative update of coefficients

The iterative part of the coefficients optimization approach re-
lies on the fact that the basis is unit and orthogonal and that
the average variance in our projected space is the unit matrix
(so hopefully all variances are close to the unit matrix). When
optimizing the auxiliary function

F (lj) = 0.5 log det(P ′

j ) − 0.5tr(P ′

jΣ
′

j) (13)
for symmetric P ′

j and Σ
′

j , the second order term in a quadratic
approximation to the auxiliary function around a current value
Q′

j (so P ′

j = Q′

j + ∆j) would be:
−0.25tr(∆jQ

′−1
j ∆jQ

′−1
j ). (14)

Since we have projected the feature space so that most of
the variances are close to unit, the variance Q′−1

j will be
similar to the unit matrix. This makes the second order
term approximately equal to −0.25tr(∆j∆j) which equals
−0.25vec′(∆j)

T vec′(∆j). Thus means that we can do simple
gradient descent in the vectorized space of covariance matrices
with a learning rate of 1/(−2 × −0.25) = 2 and the update
should be a reasonable starting point. Since the basis has been
arranged to be an orthonormal subspace of the vectorized space
of covariance matrices, we can just go in the direction of the
gradient of the coefficients with learning rate of 2. The gradient
w.r.t. the coefficients is:

∂F

∂lj
= 0.5Mvec′(P ′−1

j − Σ
′

j) (15)

where the basis matrix M is as defined in Equation 12. It fol-
lows that our initial proposed step dj for the coefficient vector
lj on each iteration will equal

dj = Mvec′(P ′−1
j − Σ

′

j). (16)
Projecting back with the basis matrix M and converting to a
matrix, this will equal a step ∆k in the basis matrix Sk equal
to:

∆k = mat′(MT
Mvec′(P ′−1

j −Σ
′

j)). (17)
However, this step size may not be optimal even with the
quadratic assumption because P ′ 6= I . Instead we decide to
add some constant k times the proposed step. The quadratic
approximation to the change in auxiliary function can be com-
puted as a function of k as:
0.5k tr(∆j(P

′−1
j − Σ

′

j)) − 0.25k2tr(∆jP
′−1
j ∆jP

′−1
j ).

(18)
The optimal value of k (according to the quadratic approxima-
tion) will thus be:

k = tr(∆j(P
′−1
j − Σ

′

j))/tr(∆jP
′−1
j ∆jP

′−1
j ). (19)

Due to the quadratic approximation there is still a possibility
with this update rule that we can overshoot, and either fail to
improve the auxiliary function or enter the region where P ′

j is
not positive definite. Therefore after each update we compute
the eigenvalues of P ′

j to make sure that they are all positive,
and compute the auxiliary function (Equation 13). If it has not
increased, we repeatedly halve k until it increases. However,
close to convergence this time-consuming check can be elimi-
nated if

0.25k2tr(∆jP
′−1
j ∆jP

′−1
j ) < 0.12, (20)

i.e. the quadratic term in k in the auxiliary function is less than
0.12. The justification is beyond the scope of this paper but is
based on reducing the auxiliary function to a form α + βk +
0.5

PD
d=1 log(1 + kγd) for β > 0 and taking the worst-case

scenario which occurs when all but one of the γd are zero and
the nonzero γd is negative (it also relies on the fact that k has
been computed as the optimal value according to a quadratic
approximation to the auxiliary function).

The update of the coefficients must be continued for typi-
cally tens of iterations for good convergence; we continue until
the change in auxiliary function per iteration is small.

Speaker adaptation
fMLLR fMLLR+MLLR

Baseline ML 15.2% 14.6%
fMPE+MPE 13.9% 13.4%

fMPE+rebuild 14.4% 13.8%

Table 1: Baseline system performance: English, TC-STAR
setup

5. Full covariance setup
Our full covariance estimation incorporates smoothing as intro-
duced in [9] and as used in previous full covariance systems at
IBM, e.g. [10]. This consists of scaling the off-diagonal ele-
ments of the covariance by a scale c

τ+c
where c is the count of

the data assigned to the Gaussian and τ is a smoothing constant
(100 in this case).

5.1. Full covariance fMPE

We also report full covariance experiments with fMPE. This in-
volves some fairly straightforward matrix calculus where we
compute the direct and indirect gradients [6] with respect to the
data. Most of the equations are exactly analogous to the diag-
onal case, an exception being that we have to take into account
the scaling of the off-diagonal described above. This turns out
to involve an analogous scaling on a matrix representing a gra-
dient w.r.t. full-covariance statistics.

6. Experimental setup
We report experiments on data from the English portion of
the European TC-STAR project [11], which consists of Euro-
pean parliamentary speeches in (accented) English. After seg-
mentation and silence removal the training data is 80 hours
long. We test on the 2006 English development data, which
is 3 hours long. The baseline system has 6000 cross-word
context-dependent states with ±2 phones of context and 150000
Gaussians. The basic features are PLP+LDA+MLLT. Speaker
adaptation includes cepstral mean and variance normalization,
VTLN, fMLLR and MLLR. The models are trained on VTLN-
warped and fMLLR-transformed data. In addition we train
fMPE [6, 7] and MPE [8]. All results in this paper are given
without language model rescoring. The baseline results are in
Table 1. This last number serves as the baseline for our ex-
periments; all systems are built from scratch on top of fMPE
features.

We also report some experiments on the Mandarin section
of the RT’04 test set from the EARS program. The test set is 1
hour long after segmentation. The training data consists of 30
hours of hub4 Mandarin training data, 67.7 hours extracted from
TDT-4 data (mainland Chinese only), 42.8h from a new LDC-
released database (LDC2005E80) and 50 hours from a private
collection of satellite data. The system is as for TC-STAR, but
with 100000 Gaussians, and we are not rebuilding any systems
on top of fMPE features (any fMPE training is done in the nor-
mal way, from an existing trained system).

7. Experimental results
7.1. Smoothing in full covariance systems

The results on Mandarin data in Table 2 are presented mainly
to show the importance of smoothing the off-diagonal in a full
covariance system: changing τ from 0 to 100 gives us 0.4% im-



# Speaker adaptation
Gauss fMLLR+MLLR

Baseline ML 100k 17.5%
fMPE+MPE 100k 16.8%

Fullcov, τ = 100 50k 16.7%
Fullcov, τ = 0 50k 17.1%

Fullcov, τ = 100 +fMPE 50k 15.5%

Table 2: Diagonal vs. full covariance: Mandarin RT’04 setup

System type
Diagonal Fullcov SPAM

#Gauss τ = 100 D = 80 D = 160
300k 14.5%
250k 14.6%
200k 14.8% 14.2% 14.0% 14.0%
150k 15.4% 14.1% 14.1% 14.3%
125k 15.0% 13.8% 14.0% 14.0%
100k 15.4% 14.0% 14.1% 14.0%
75k 15.7% 13.9% 14.3% 14.0%
50k 17.0% 14.1% 14.4% 14.0%
40k 16.3% 14.1% 14.5% 14.3%
30k 17.0% 14.2% 14.8% 14.4%
20k 17.8% 14.4% 15.1% 14.8%

Table 3: Diagonal, Fullcov vs. SPAM, TC-STAR setup. fM-
LLR adaptation only.

provement. It also demonstrates that fMPE can work with full
covariance Gaussians, with more than 1% absolute improve-
ment from our best diagonal fMPE+MPE result. We do not
yet have results with MPE but it has previously been shown, at
least in the absence of MPE, full covariance Gaussians can be
trained with MPE [9]. Further experiments with full covariance
use smoothing with τ = 100. This smoothing does not appear
to help with SPAM.

7.2. Full covariance vs. SPAM

Table 3 compares diagonal vs. full-covariance vs. SPAM sys-
tems on TC-STAR data with varying numbers of Gaussians.
Systems were built from scratch based on fixed state align-
ments, with sizes 300k and 150k. The experiments down to
150k Gaussians inclusive are based on merging Gaussians in
a maximum likelihood fashion in steps from the 300k system,
with one pass of re-estimation between each step (with the num-
ber of Gaussians per state based on a power rule count0.2) Be-
low 150k, the experiments are based on merging Gaussians in
the same way starting from the 150k system. Full-covariance
and SPAM systems are trained in two E-M steps in each case,
starting from the same-sized diagonal system. In SPAM train-
ing, the basis is trained on each iteration based on stored full
covariance statistics.

The best absolute results are acheived with full covariance
(13.8%), followed closely by SPAM (14.0%), with the best di-
agonal system at 14.5%.

Table 4 shows the effect of optimizing the SPAM basis, ver-
sus leaving it at the initial PCA-estimated state. It appears to
help somewhat when the number of Gaussians is small. Note
that Figure 2 in [4] shows that basis optimization also helps
more when the dimension D is smaller.

SPAM, D = 80
#Gauss Optimized Not-optimized
125k 14.0% 14.1%
100k 14.1% 14.1%
75k 14.3% 14.3%
50k 14.4% 14.5%
40k 14.5% 14.7%
30k 14.8% 14.9%
20k 15.1% 15.4%

Table 4: Effect of SPAM basis optimization, TC-STAR setup.
fMLLR adaptation only.

8. Conclusions
In this paper we have for the first time presented complete and
explicit formulas for reasonably efficient SPAM basis and coef-
ficients optimization. We have also presented experiments on a
large vocabulary task which show that SPAM models give bet-
ter absolute results than diagonal models and nearly as good as
smoothed full covariance models.

9. References
[1] M.J.F. Gales, “Semi-tied covariance matrices for hidden

Markov models,” IEEE Transactions on Speech and Audio
Processing, vol. 7, no. 3, pp. 272–281, 1999.

[2] J. Huang, V. Goel, R. Gopinath, B. Kingsbury, P. Olsen &
K. Visweswariah, “Large vocabulary conversational speech
recoginition with the extended maximum likelihood linear
trnasformation (EMLLT) modcel,” ICSLP, 2002.

[3] S. Axelrod, V. Goel, B. Kingsbury, K. Visweswariah &
R.A. Gopinath, “Large vocabulary conversational speech
recognition with a subspace constraint on inverse covari-
ance matrices,” Eurospeech, 2003.

[4] S. Axelrod, V. Goel, R. A. Gopinath, P. A. Olsen &
K. Visweswariah. “Subspace Constrained Gaussian Mix-
ture Models for Speech Recognition.” Submitted to IEEE
Trans. Speech & Audio Processing, September 2003.

[5] K.C. Sim & M.J.F. Gales, “Adaptation of Precision Matrix
Models on Large Vocabulary Continuous Speech Recogni-
tion”, ICASSP, 2005.

[6] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
G. Zweig, “fMPE: Discriminatively trained features for
speech recognition,” ICASSP, 2005.

[7] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
G. Zweig, “Improvements to fMPE for Discriminative
Training of Features,” Interspeech, 2005.

[8] D. Povey and P. C. Woodland, “Minimum Phone Error
and I-smoothing for Improved Discriminative Training,”
ICASSP, 2002.

[9] D. Povey, “Discriminative Training for Large Vocabulary.
Speech Recognition.” PhD thesis, Cambridge University,.
2003.

[10] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon &
G. Zweig, “The IBM 2004 Conversational Telephony Sys-
tem for Rich Transcription,” ICASSP, 2005.

[11] B. Ramabhadran, O. Siohan, L. Mangu, G. Zweig, M.
Westphal. H. Schulz & A. Soneiro, “The IBM 2006
Speech Transcription System for European Parliamentary
Speeches,” Submitted to Interspeech, 2006.


