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Abstract

We have experimented with approaches to
speech recognition that are inspired by work
from the speaker recognition community, in-
cluding an approach that was used in IBM’s
best speech recognition submissions in its Jan-
uary 2009 evaluation. Here we explain in
general terms the techniques used, without
the full technical details. We initially used
an approach based on Maximum a Posteri-
ori (MAP) adaptation of Gaussian Mixture
Models; this approach gave improvements in
a Maximum Likelihood system but did not
seem promising to combine with discrimina-
tive training. More recently we have used a
different approach based on a subspace adap-
tation of a Gaussian Mixture Model; this gave
improvements over a standard system even
when combined with discriminative training.
It gave very substantial improvements when
trained with limited data, which may relate to
the smaller number of parameters needed with
this approach.

1 Introduction

A basic approach long used in text-independent
speaker recognition is to train a Gaussian Mixture
Model (GMM) for each speaker and to verify a test
utterance based on the likelihood of the utterance
given that speaker’s GMM compared with a cohort
of other models or a single “universal background
model”. A drawback of this approach is that it
is hard to robustly estimate the parameters of the
speaker-specific GMMs given limited data. There-
fore, in recent years, approaches have been devised

to estimate the parameters more robustly based on
Maximum A Posteriori (MAP) (GLAAd94; AFR00)
and subspace methods such as nuisance attribute
projection (SCB05), within-class covariance nor-
malization (HKS06) and factor analysis (PPNV08).
Thes factor analysis method in particular not only
accounts for cross-speaker variability but also di-
rectly addresses the issue of within-speaker variabil-
ity such as telephone type and background noise.
The same problems that exist in speaker recognition,
such as estimation given limited data and irrelevant
sources of variation, also exist in speech recognition
so it is natural to try to use those speaker recognition
techniques in a speech recognition context. We have
experimented with two different approaches. The
rest of this chapter is split into two sections, with
Section 2 summarizing our research on the MAP
based approach and Section 3 summarizing the fac-
tor analysis based approach which is the one we cur-
rently favor.

2 MAP based adaptation

In (DMV08) we introduced a speech recognition
technique based on MAP adaptation. Note that al-
though we use the term “adaptation” it is not a
speaker adaptation technique, the term refers to the
adaptation of models to particular phonetic states.
We first train a large mixture of Gaussians (e.g. 750
Gaussians) which we refer to as a “Universal Back-
ground Model” – the term is borrowed from speaker
recognition. We then MAP adapt this large GMM
to each clustered phonetic state. In order to im-
prove the smoothing we actually used a modified
form of MAP estimation which took into account



Adaptation Baseline MAP MAP+STC
VTLN 17.9 17.5 16.6

+fMLLR 16.6 15.0
+MLLR 16.2 14.8

Table 1: Results from MAP-based adaptation: Mandarin,
dev’07.

the phonetic decision tree, so that a phonetic state is
adapted first to phonetic states that are close in the
tree. The adapted models were diagonal covariance
Gaussians, but we also introduced a separate Semi-
tied Covariance (STC) transformation (Gal98) for
each of the 750 Gaussians. This helped our exper-
imental system, and in experiments performed later
on we were unable to obtain any improvement from
this type of technique in our baseline setup. In order
to make the memory usage manageable, we intro-
duced a parameter pruning scheme tied to the tree
structure.

Table 1 shows the results; see (DMV08) for exper-
imental details. The table shows about 1.5% abso-
lute improvement for all conditions, but the situation
is a little more complicated than that. The baselines
with fMLLR and MLLR are “normal size” baselines
with 500,000 Gaussians (about the size we would
build for a normal evaluation system) but the VTLN-
only baseline is twice the normal size at one million
Gaussians, which helped by 0.8%. This masks the
fact that the MAP based system gave much more
improvement in the VTLN-only condition. We in-
creased the size of this baseline to provide a fairer
comparison to the MAP based system which has a
very large number of (smoothed) parameters, several
times more than even the largest baseline system.
Due to time constraints we did not rerun the fMLLR
and fMLLR+MLLR baselines with the larger size,
which would have reduced our improvement. Re-
gardless of the exact amount of improvement from
the MAP based system, we did not pursue this ap-
proach because we believed that it would be too hard
to combine this style of system with discriminative
training. This is due to its very large number of
parameters, which does not combine well with dis-
criminative training (D.04).

3 Subspace adaptation

The style of system we are currently working with is
related to the factor analysis approach of (PPNV08).
In this approach, the means of a large mixture of
Gaussians are concatenated to form a “supervector”,
and we allow the parameters of our adapted system
to vary in a subspace of that vector space, so each
phone in context would be represented by a vector
in our chosen subspace. For example, we have used
a subspace dimension of 50 in a system with feature
dimension 40 and 750 Gaussians in the GMM, so
we are using 50 out of a possible 30000 dimensions.
We also use a separate subspace to represent the nui-
sance effect of speaker variation, which is analo-
gous to the use of a separate subspace to represent
the nuisance effect of channel or session variation
in (SCB05; PPNV08). We have added certain exten-
sions to this basic model. One is to replace the use
of a single vector to represent each phone in context,
with a set of vectors each with their own weights.
Each vector represents an adapted mixture of Gaus-
sians, so our extended model represents a mixture of
mixtures of Gaussians. We also make the Gaussian
mixture weights vary as a function of our subspace
vector. The log mixture weights vary linearly with
the subspace vector, and we normalize them to sum
to one. A further feature of our model is that each of
the e.g. 750 basic Gaussians has a full covariance.
The covariances are shared between the classes, and
are not adapted as in the MAP based approach de-
scribed above.

3.1 The model

For each acoustic statej and given the speakers, the
probability modelp(x|j) is:
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so we describe the acoustic state by the vectorvj

and the speaker byv(s); the notation·+ means ap-
pending a 1 to the vector (to handle constant offsets).
These vectors have a dimension of about 50.I is



the number of Gaussians in the model being adapted
and will typically be about 750. The acoustic states
1 ≤ j ≤ J have the normal range, e.g. several thou-
sand, although this style of system can give its best
results with more states than the baseline. The pa-
rametersMi andNi describe the phonetic subspace
and the speaker subspace. The weightswji are a log-
linear function of the model weights, normalized to
sum to one. The parameterswi control the projec-
tion from the model subspace to the weights. The
covariance matricesΣi are full covariance matrices
that are not specific to the acoustic state but to the
Gaussian indexi. Experiments with a subspace rep-
resentation of the inverse (diagonal) covariance ma-
trix, combined with semi-tied covariance transform
to handle more general rotations, failed to show any
improvements. On top of the basic model described
above, we use the notion of a substate so that a state
can be represented by a weighted sum over the mod-
els given by different subspace vectors.

The speaker adaptation in this model involves
training very few speaker-specific parameters (we
use a subspace dimension of typically about 50),
so our speaker adaptation is actually done on a
per utterance basis. We combine this with conven-
tional fMLLR/constrained MLLR, which is straight-
forward, and also with MLLR which is less straight-
forward because it does not combine well with the
efficient model evaluation (we have to recompute the
normalizing factors for each speaker). For the Ara-
bic results that we report here, we also include an ex-
tension of the speaker-adaptation technique that uses
more speaker-specific parameters, but we do not de-
scribe this here in detail

3.2 Likelihood evaluation

When we evaluate likelihoods given the model, we
can arrange the computation so that computing the
likelihood for a particular acoustic statej and Gaus-
sian indexi involves no more than a dot product in
the model subspace. We can then prune the Gaus-
sian indicesi to compute only a small subset of the,
say, 750 Gaussians. This computation requires us to
store a normalizing term for each statej and Gaus-
sian indexi, and this normalizing term dominates
the memory requirements of the model. Explicitly
constructing the projected means in this model is im-
practical due to memory constraints. The model is

about two to four times slower to decode with than
a normal system but this gap could easily be elimi-
nated without losing much performance.

3.3 Training with the subspace model

The process of model training consists of training
the global parametersMi, Ni andwi and the state-
specific parametersvj . We initialize the vectorsvj

randomly and then iteratively optimize the projec-
tions Mi andwi and the vectorsvj . The speaker
subspace is trained in a similar way; after train-
ing the main model we initialize the projections
Ni and then iteratively re-estimate the speaker vec-
tors v

(s) and the projectionsNi. In general, the
statistics required to re-estimate these parameters
are quite compact and the re-estimations are fairly
straightforward; we get an auxiliary function which
is quadratic in the parameters we are trying to op-
timize and it is easy to optimize. Training requires
about the same number of iterations as a normal sys-
tem (about 30), but the first 10 iterations are done
using only one pass over the data because prior to in-
troducing the substates, it is possible to store appro-
priately pruned statistics which allow us to do many
iterations of update without re-accessing the data.

The only part of the optimization which is not
absolutely straightforward is the part which relates
to the weight projectionswi and the effect of the
weights on the model vectorsvj . This is handled
with a suitable quadratic approximation and is not a
problem in practice.

3.4 Discriminative training

We were able to combine discriminative training
with this style of system. Model-space discrimina-
tive training is fairly straightforward, as we can use
a version of the Extended Baum-Welch type of tech-
nique using weak sense auxiliary functions (D.04).
We did introduce some details that are specific to
this framework. We use a factor in the learning rate
for the state-specific vectors that slows down learn-
ing when the discriminative data counts are very
small. More importantly, we find that we tend to
get an instability that is localized to particular Gaus-
sian indicesi so we introduced a method to detect
this via differences in the (appropriately normalized)
gradient directions on successive iterations; if we
detect instability we slow down the learning rates



for the affected matrices. The discriminative train-
ing we implemented is based on Minimum Phone
Error(MPE) (D.04) and Boosted MMI (DDB+08)
objective functions. The tuning is quite similar to
a normal system, e.g.E = 2, four to six iterations
required; withE defined by analogy with (D.04).
Lattices were generated from the ML version of
our factor-analyzed system, although this presented
some challenges due to the slower decoding speed.

Feature space discriminative training, e.g.
fMPE (D.05) is fairly straightforward as it only
requires the calculation of the model likelihood
gradients w.r.t. the features. We implemented a
simpler version than the one described in (D.05)
as we omitted the “indirect differential” and did
not perform the ML model update in between
each feature-space update. These two things are
related as the “indirect differential” is intended to
account for the effect of the model udpate. Our
typical setup is to do ML training, then model
space discriminative training, then feature space
discriminative training, although for the Arabic
system we used a more complicated sequence.
Our experience is that model space discriminative
training works about as well as for a normal type
of system, but feature space discriminative training
gives much less additional improvement. One
plausible reason for this is that the structure of the
transformation used in fMPE is quite similar to the
model we are using (it is based on a similar sized
mixture of Gaussians), so there may be less synergy
between the feature and model space than for a
normal system. Despite this, the improvement at the
ML level tends to be large enough to outweigh the
reduced benefit from discriminative training.

3.5 Probability scale

An interesting aspect of this kind of model (and it
also applies to the MAP-adapted type of model),
is that the optimal acoustic weight is very differ-
ent from our normal system, around 1/12 as op-
posed to our normal value of 1/19. Because our
features consist of nine frames spliced together and
projected with LDA, and because LDA can be in-
terpreted as an ML technique, we can argue that the
“true” acoustic weight is (or should be bounded in
some direction by) 1/9. This is because if we were
to skip nine frames each time, we would be model-

Conditions: Baseline Subspace
VTLN+fMLLR+MLLR 24.3% 19.6%

+fMMI+MMI 18.2% 17.3%

Table 2: Subspace-adapt vs normal system on 50 hours
English BN (test: RT’04).

ing each un-spliced frame exactly once. It is encour-
aging that this style of model takes us closer to the
theoretically motivated acoustic weight.

3.6 Details and tuning of training

We start training by initializing the un-adapted
GMM, which typically has 750 full covariance
Gaussians and is trained on all speech classes mixed
together. We then accumulate count and first-order
statistics using the product of these 750 Gaussians’
posteriors and the (zero-one) phonetic class posteri-
ors, based on a Viterbi alignment of the data using a
baseline system. These statistics are compressed to
fit in memory by discarding small counts. We per-
form the first 10 or so iterations of training at once
without re-accessing the data, using these statistics.
This is sufficient to get a good initial estimate of the
model. From this point we can start increasing the
number of substates and doing further passes over
the data while computing Gaussian posteriors based
on the adapted versions of the models. In these itera-
tions of training, we accumulate statistics that are the
same size as the parameter set (representing the lin-
ear term in the objective function for each parame-
ter), plus Gaussian-specific counts which determine
the quadratic parts of the objective function. These
Gaussian-specific counts dominate the statistics in
terms of memory.

If we are performing speaker adaptation as part
of this approach, we compute on each training
iteration the speaker-specific (actually, utterance-
specific) vectors as we access each training file.

3.7 Results

3.7.1 English broadcast news, 50h training

We first show results on 50 hours of training data,
on an English Broadcast News task. This 50 hours is
a subset of the Hub4 data which we have previously
published results on (DDB+08). Testing is on the
RT’04 English Broadcast News test set.



System: Dev07 Dev08
Eval07

(unsequestered)

VxU.vfr 10.0% 11.5% 14.4%
SUBxU.vfr 9.5% 11.1% 14.2%

Table 3: Arabic evaluation system, January 2009.

The results in Table 2 are quite spectacular with-
out discriminative training (top row); nearly 20%
relative improvement from this approach. How-
ever the improvement after discriminative training
(bottom row) is only 5% relative. This situation
where we have relatively little data plays well to the
strengths of this system which has relatively few pa-
rameters (about half the baseline). We do not have
exactly comparable numbers on this testing setup
for the MAP-based approach described above, but
results on the same training and test sets using a
slightly different configuration showed an improve-
ment of 24.6% to 23.6% with only ML training.
It seems that with this amount of training data the
subspace approach does much better than the MAP-
based approach1. However, the difference between
the MAP and factor anlyzed approaches was less
clear with the larger Mandarin setup which we used
for MAP experiments Table 1. Again we do not have
exactly comparable numbers, but we estimate that
the two systems in their best configuration would
give about the same results under ML training.

3.7.2 Arabic January 2009 Evaluation

Table 3 shows the word error rate numbers for our
Arabic system prepared for the January 2009 GALE
evaluation. The VxU refers to a vowelized (V) Ara-
bic system cross-adapted on the output of an unvow-
elized (U) system. “vfr” refers to “variable frame
rate,” an experimental technique which we applied
in test time to normalize speaking rate. The sub-
space (SUB) system is built on top of a vowelized
system, so we cross adapt to the unvowelized output
giving us SUBxU. The results shown are the final
numbers, with all forms of adaptation plus discrimi-
native training. The discriminative training regime
applied to the subspace system was rather com-
plicated and involved 6 iterations of model-space

1Note that these numbers were obtained without MAP-
adapting the variances, since the variance adaptation hurts on
this smaller training set.

System: Dev07 Dev08
Eval07

(unsequestered)

TxN.vfr 9.7% 8.6% 9.2%
SUBxN.vfr 9.7% 8.3% 9.4%

Table 4: Mandarin evaluation system, January 2009.

boosted MMI training, lattice regeneration, 4 further
passes of boosted MMI, 5 iterations of fMPE and
four iterations of MPE. Normally we would expect
a system to stop improving after so much discrim-
inative training, but this system proved quite robust
to it. The discriminative training regime was applied
ad hoc; we do not believe that there is anything spe-
cial about this particular setup. The improvements
versus our baseline system were about 1% absolute
before discriminative training, i.e. larger than our
final improvements with discriminative training in-
cluded.

3.7.3 Mandarin January 2009 Evaluation

We also trained this style of system for IBM’s
Mandarin submission to the January 2009 evalua-
tion, trained on 1737 hours of data; see Table 4
for the results. Here, “T” means a tonal system
(i.e. with tone feaures) and “N” means a non-
tonal system, so the TxN baseline is a tonal system
adapted (with fMLLR and MLLR) on the text out-
put of a non-tonal system. The subspace (SUB) sys-
tem is built on tonal features, and adapted on the
non-tonal system. The baseline discriminative train-
ing regime was with five iterations of feature-space
boosted MMI (fBMMI) followed by tree rebuilding
and four iterations of model-space boosted MMI.
The subspace system had five iterations of model-
space BMMI and five of feature-space BMMI. The
results with the subspace are not clearly better than
the baseline; however, we need to consider the im-
provement we get from tree-based MLLR for cross-
adaptation, which we implemented for the baseline
but not the subspace system. E.g. using our de-
fault, non-optimized min-count of 3000 (vs 1250
in Table 4), our baseline numbers on Dev07 and
Eval07(unsequestered) were 9.9% and 9.6% respec-
tively which shows some of the effect of tree-based
MLLR. So if we had implemented tree-based MLLR
for the subspace system we believe we would have
been able to show a clearer improvement over the



baseline.

4 Conclusion

We have briefly described our work with MAP-
based adaptation and subspace adaptation (factor
analysis) for speech recognition. In these tech-
niques we apply robust model adaptation techniques
originally devised for adapting to speakers, but in-
stead apply them to adapting to phonetic states. In
both cases we get improvements under ML training
compared with a conventional system, when trained
with both small and large amounts of data. The
first, MAP-based technique has the drawback that
it has a very large number of parameters and there-
fore presents problems for discriminative training.
The second, factor analysis based technique is more
promising. We have demonstrated word error rate
improvements on a large task in an evaluation set-
ting; however, the improvements are quite modest.
In addition to the word error rate improvements, the
framework is quite useful in terms of allowing new
kinds of techniques to be introduced. It may also of-
fer the opportunity to improve speaker recognition
techniques as it represents a kind of “unified model”
of speaker and phonetic-state variation. The main
challenge is the complexity of the approach which
may limit its uptake. Technical details are provided
in (D.09).
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