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ABSTRACT

This is an in-depth, tutorial-style introduction to the techniques
involved in training a factor analyzed style of speech recognition
system. Algorithms are explained in detail, with an emphasis on the
how-to rather than the derivations. The recipe described here is both
an extension to and a special case of the prior work we have done.
Changes include a simplification of the procedure used to initialize
these models, the introduction of “sub-models” which savesmemory
and may have modeling advantages, an extended approach to factor
based speaker adaptation that uses the sub-models, and a mechanism
to estimate a subspace-constrained version of ConstrainedMLLR
transforms in this framework.

Index Terms— Speech Recognition, Universal Background
Model, Factor Analysis

1. ABOUT THIS DOCUMENT

This document was originally created by Dan Povey in the months
leading up to the Johns Hopkins summer workshop on speech pro-
cessing, for the research group named “Low Development Cost,
High Quality Speech Recognition for New Languages and Do-
mains”. It is intended to serve as a tutorial-style introduction to the
use of subspace GMMs for speech recognition. It has been through
various extensions and revisions, and even during the workshop
various parts of it have been changed in order to fix errors discov-
ered by other workshop participants and modify update formulas
and the corresponding derivations where problems were discovered.
Also some parts of the document have been changed in order to
be compatible with the way we have actually implemented these
techniques (for instance, not using “offset terms” which simplifies
the mathematics). Particular thanks go to Lukas Burget and Arnab
Ghoshal, who found and helped to fix a number of problems.

2. INTRODUCTION

Section 3 describes some nonstandard notation that we will use
throughout the rest of the document. The model is introducedin
Section 4, where we describe first the basic idea and then the various
extensions which we intend to build on top of it. Section 5 describes
the relationship between this method and previous work.

Section 6 describes in general terms the process of trainingthis
type of model and discusses the kind of code architecture we envis-
age to support it. Section 7 discusses the initialization ofthe Gaus-
sian Mixture Model (GMM) that is used to initialize the main model

∗Thanks to Lukas Burget, Arnab Ghoshal, Rick Rose and Geoff Zweig
for comments and suggestions.

and for pruning. Section 8 describes the initialization of the actual
model. Section 9 describes the process used for fast likelihood eval-
uation given the main model (this is needed in training and testing).
Section 10 describes the various statistics accumulation processes
required. Section 11 describes the various kinds of model update.
The derivation and equations for the constrained MLLR estimation
approach we are using is in Sections 12 and 13; Section 14 summa-
rizes the procedures used when applying these to the model weare
using here.

Appendix A describes an algorithm for fast computation of the
top eigenvectors of a scatter matrix, which is useful in the estimation
of parameter subspaces for constrained MLLR. Appendix B con-
tains a proof related to singular value decomposition whichwe use
in other parts of the document. Appendix C describes a technique for
using prior probabilities with the model we describe, whichwe have
moved to an appendix to avoid cluttering the main document. Ap-
pendix D describes a probability model for offsets from the mean of
a distribution, which is used in our model as part of a prior distribu-
tion. Appendix E describes an algorithm for Maximum Likelihood
clustering of a number of Gaussians into clusters, each represented
by a Gaussian. Appendix F contains derivations of some formulas
used in the main text. Appendix G describes procedures for maxi-
mizing auxiliary functions involving matrices of reduced rank. Ap-
pendix H describes a process for limiting the condition of a matrix.
Appendix I describes a more general process for flooring symmet-
ric matrices. Appendix J describes how to estimate and use a prior
distribution over the projection matrices estimated in this scheme.
Appendix K describes a method for renormalizing the phonetic

3. NOTATION

We use some non-standard notation to simplify the equations. This
is summarized here:

v+ Vectorv extended with a 1,

i.e.











v1
...
vn
1











.

v− Vectorv with its last element removed
M+ Matrix M with an extra last row equal to[0 0 . . . 0 1]
M+0 Matrix M with an extra zero row appended
M− Matrix M with its last row removed
M−− Matrix M with its last row and column removed
M−C Matrix M with its last column removed
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4. SUBSPACE GAUSSIAN MIXTURE MODEL

In this section we describe the modeling approach we are using.
Rather than immediately write down the model, we build up in com-
plexity starting from the basic idea. This should enable thereader to
distinguish between the core ideas and the features that were built on
top. Section 4.1 describes the basic model, which is based ona sub-
space representation of the mean parameters of a shared GMM struc-
ture. Section 4.4 describes the addition of sub-states, which involves
having a mixture within each acoustic state of the basic model. Sec-
tion 4.5 describes the addition of “speaker factors”, whichmakes the
model mean a sum of two mirror-image terms, one coming from the
acoustic state and one from the speaker. Section 4.6 describes the
introduction of “sub-models”, in which the model describedabove
is split up into a number of different models, each applying to a par-
ticular general region of acoustic space, and likelihoods are obtained
by summing over the sub-models.

4.1. Basic model

In this section we describe the most basic form of the model, without
speaker adaptation or sub-states. We use the index1 ≤ i ≤ I for
the Gaussians in the shared GMM (e.g.I = 750), and the index
1 ≤ j ≤ J for the clustered phonetic states (e.g.J = 8000 for a
reasonably typical large vocabulary system). Let the feature dimen-
sion be1 ≤ d ≤ D, e.g.D = 40, and let the subspace dimension
be 1 ≤ s ≤ S, e.g. S = 50, with S ≤ ID. The “subspace” of
dimensionS is a subspace of the total parameter space of the means
of the GMM, which is of sizeID.

For each statej, the probability modelp(x|j) is:

p(x|j) =

I
∑

i=1

wjiN (x;µji,Σi) (1)

µji = Miv
+
j (2)

wji =
exp(wT

i v
+
j )

∑I

i′=1 exp(wi′
Tv+

j )
(3)

Thus, each state has a shared number of mixtures (e.g.,I = 750).
The means vary linearly with the state-specific vectorvj . We use
v+
j to represent the same vector extended with a 1, to handle con-

stant offsets. The log weights prior to normalization also vary lin-
early withvj . The parameters of the system are the mean-projection
matricesMi ∈ ℜD×(S+1), the weight-projection vectorswi ∈
ℜ(S+1), the variancesΣi ∈ ℜD×D, and the state-specific vectors
vj ∈ ℜS .

4.2. Discussion of model size

To give the reader a feel for the number of parameters involved,
for the values ofI, J,D andS mentioned above the total number
of parameters would be, from most to fewest parameters: mean-
projections,ID(S+1) = 750×40× (50+1) = 1.53×106 ; vari-
ances,1

2
ID(D+1) = 750×40×41

2
= 0.615×106 ; state-specific vec-

tors,JS = 0.4× 106; weight-projections,IS = 750× (50 + 1) =
38.25 × 103. Thus the total number of parameters is2.58 × 106,
and most of the parameters are globally shared, not state-specific.
For reference, a typical mixture-of-Gaussians system optimized on
a similar amount of training data might have 100000 Gaussians in
total, each with a 40-dimensional mean and variance, which gives
us 8 × 106 parameters total, more than twice the subspace GMM
system. Note that the quantity of state-specific parametersin the

subspace GMM system is less than one tenth of that in the normal
GMM system. For this reason, we extend the model to include mix-
tures of sub-states.

4.3. Omitting the offset terms

The use of the “offset terms” implied byv+ is optional; the only
advantage of constraining the last element ofv+ to be 1 is that we
do not need to estimate that parameter, and by doing away withthat
constraint we only have to estimate one more parameter out of, say,
50. This simplifies the equations. Without the offset, we would have:

µji = Mivj (4)

wji =
exp(wT

i vj)
∑I

i′=1 exp(wi′
Tvj)

, (5)

(6)

and this would affect the dimensions ofMi which would now have
dimensionD × S, and ofwi which would now have dimension
S. In the following, we will show the equationswith the offset terms
but will make clear which terms and operators would disappear if we
were not using the offsets, by putting all offset terms and operators in
red (this may render as light gray when printed in black and white).
For example, we would have:

µji = Miv
+
j , (7)

with Mi ∈ ℜD×(S+1), so removing everything in red would give us
the form of the equations without the offsets.

4.4. Subspace mixture model with sub-states

The subspace mixture model with sub-states is the same as in Equa-
tions (1) to (3) except each state is now like a mixture of states; each
statej has sub-states numbered1 ≤ m ≤ Mj with associated vec-
torsvjm and mixture weightscjm with

∑Mj

m=1 cjm = 1; we can
write out the model as:

p(x|j) =

Mj
∑

m=1

cjm

I
∑

i=1

wjmiN (x;µjmi,Σi) (8)

µjmi = Miv
+
jm (9)

wjmi =
exp(wT

i v
+
jm)

∑I

i′=1 exp(w
T
i′
v+
jm)

. (10)

It is useful to think about the sub-states as corresponding to Gaus-
sians in a mixture of Gaussians, and as we describe later, we use a
variant of a familiar Gaussian mixing-up procedure to increase the
number of states. This model is in effect a mixture of mixtures of
Gaussians, with the total number of Gaussians in each state being
equal toI Jm. Clearly this large size could be expected to lead
to efficiency problems. Later we will show how despite this, likeli-
hoods given this model can be computed in a time similar to a normal
diagonal mixture of Gaussians.

4.5. Subspace mixture model with speaker vectors

Another useful extension to the basic subspace GMM framework is
a technique that uses speaker vectors, where each speakers will be
described by a speaker vectorv(s) of dimensionT (e.g. we might
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useT = 50, the same as the subspace dimensionS). The projected
mean now becomes:

µ
(s)
jmi = Miv

+
jm +Niv

(s)+, (11)

so Niv
(s)+ becomes a speaker-specific offset to meansµjmi for

speakers. We extend the speaker vectorv(s) with a 1 (assuming
we are using offsets) tov(s)+ for symmetry and to introduce the
potential for code sharing, but the offset term (if used) is redundant
with the one inv+

jm. In previous work [1, 2], we omitted the offset
on the speaker vector. We do not make the mixture weights depen-
dent on the speaker factor: this is for efficiency reasons, asit enables
the speaker adaptation to be implemented as a feature-spaceoffset
for each Gaussian indexi. The use of separate subspaces for each
speech state and speaker is analogous to the “factor analysis” ap-
proach used in speaker identification [3]. Because the number of
parameters to be estimated per speaker is so small, in practice we
have actually been estimating these vectors for each speechsegment
of each speaker.

4.6. Sub-models

A further extension that we can try is a mixture of Subspace GMMs,
which we call a mixture of “sub-models”. Unlike the modifica-
tions described above, this has not been implemented before. This
would involve initially partitioning theI Gaussians in the back-
ground GMM into clusters1 ≤ k ≤ K, each of sizeIk. Then, we
essentially duplicate the model above for each clusterk and sum
over the clusters. In place of Equations (8) to (10) (but using the
speaker-factor modification of Equation (11)), we now have:

p(x|j, s) =

k
∑

k=1

Mjk
∑

m=1

cjkm

Ik
∑

i=1

wjkmiN (x;µ
(s)
jkmi,Σki)(12)

µ
(s)
jkmi = Mkiv

+
jkm +Nkiv

(s)
k

+
(13)

wjkmi =
exp(wT

kiv
+
jkm)

∑Ik
i′=1 exp(w

T
ki′

v+
jkm)

, (14)

where the constraint on the mixture weights is now that
∑k

k=1

∑Mjk

m=1 cjkm = 1. Now we haveK speaker vectors instead
of just one. The main advantage of the use of sub-models is that on
the one hand it reduces the memory required to train and decode,
and on the other hand it allows us to build larger models for the
same amount of memory. It also gives us a choice between mak-
ing the speaker vectorsv(s)

k all the same, or allowing them to be
separate which allows us to train more parameters per speaker, and
it offers a convenient way of applying multiple constrainedMLLR
transforms. We envisage using a relatively small value ofK, for ex-
ample less than 20. Note that asK approachesI the basic model
loses its power, since we no longer have any correlations to model
if there is only one Gaussian in each “sub-model”. However aswe
will describe later we can still make use of the correlationsacross
sub-models through the use of an appropriate prior over the vectors
vjkm in a state.

5. RELATIONSHIP TO PREVIOUS WORK

In terms of speech recognition work, this technique probably has the
most similarity to Eigenvoices [4] and Cluster Adaptive Training and
Extended SAT [5]. However, there is a very significant difference

because both of those techniques are focused on speaker adaptation;
they both attempt to compactly represent the most significant dimen-
sions of variation between speakers. In this work, we use similar
techniques to represent the variation between phonetic speech states,
and only secondarily apply the same ideas to modeling speaker vari-
ation. The best reference point for this work is probably to be found
in the speaker identification literature. The two-factor approach of
Equation (11) is very similar to factor analysis as used in [3] for
speaker identification. In that work, the two factors are thespeaker
and the channel, with the channel being a “nuisance factor”.In our
case the factor of interest is the phonetic state and the “nuisance
factor” is the speaker plus channel. Our model differs in a number
of respects from the one used in [3]. We model the weights of the
shared Gaussians, which is not generally done in speaker identifica-
tion. But we do not attempt to marginalize over any of the parameters
as is done in [3], which we believe would make very little difference
and would make the model hopelessly inefficient. We also do not
include the “diagonal term” used there, which essentially amounts
to putting a Maximum A Posteriori (MAP) estimation of the full set
of mean parameters of the GMM on top of the subspace. This would
introduce a potentially vast number of parameters which would have
to be heavily pruned in order to fit in memory, and would signifi-
cantly complicate training. Other extensions which we haveadded
to the basic scheme include “sub-states” and “sub-models”,and we
have also done some work to devise a subspace form of constrained
MLLR estimation and integrate it with this type of model. Theesti-
mation process and the methods used for fast computation also differ.

Our own previous work along these lines started with [6] in
which we used a shared structure of GMM together with Maximum
A Posterior (MAP) estimation to model speech states. The tree struc-
ture of the clustered speech states was used in the MAP estimation.
That approach gave substantial improvements with only Maximum
Likelihood training, but used a very large number of parameters
which would have made discriminative training infeasible.In [1]
(a book chapter, written but not yet published at the time of writing)
we give a few more results on that work and also the approach we
are currently describing. We favor the current approach since it has
a much smaller number of parameters so it is feasible to extend it to
discriminatively trained systems (we report discriminatively trained
results in [1]), and it gives better results than the MAP-based scheme
even under ML estimation when the amount of training data is lim-
ited. The technical details which were omitted in [1] because of
space constraints are given in the technical report [2]. Thedetails of
training are given there in a less complete form than the current docu-
ment, and describe a slightly different recipe than what is given here,
corresponding to the experiments we reported in [1]. That recipe in-
cluded discriminative training, but did not include sub-models, the
associated use of priors, multi-class constrained MLLR or the sub-
space version of constrained MLLR. It also used a more complicated
model initialization scheme than what we describe here, andused
MLLR which is very inefficient when combined with these typesof
models (and gives very little additional improvement).

The results reported in [1] showed that this type of model is able
to beat a conventionally structured HMM in an evaluation setting
(i.e. comparing against the very best system we can build), but only
by a very small margin given the recipe we were using at the time.
Based on results we reported there on smaller amounts of training
data (50 hours, as opposed to thousands of hours), we believethat the
advantages of this approach will be much clearer when the quantity
of training data is relatively small. This approach also gives more
improvement when no discriminative training is done, whichagain
is relevant to an environment where resources are limited, and it has a
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large proportion of its parameters not tied to any speech state, which
enables the use of out-of-domain data in a natural way, i.e. to help
train those generic parameters.

6. SUMMARY OF TRAINING OF SUBSPACE GMM

The training of this style of model is more complicated than normal
GMM training as the model has more different types of parameters.
In this section we attempt to give an overview of the process prior to
the more detailed treatment that will be given in later sections. The
basic idea is that after initializing all the parameters of the model in a
sensible way, we repeatedly pick a parameter type and optimize that
parameter given the others. The optimization of parameterstakes
place through standard Estimation Maximization approaches. Some
types of parameters can be optimized simultaneously, and some can-
not. We do not specify the exact order in which parameters should
be updated; this is a matter for experimentation.

6.1. Overview of re-estimation

The typical procedure for model initialization and training will be:

Initialize background GMM.
Initialize model.
For each iteration:

Choose the subset of types of parameters we will update.
For each speakers:

Optionally, reset the speaker factors and transforms to zero
For zero or more speaker-adaptation iterations:

Accumulate either speaker-factor or speaker-transform
statistics.

Do the appropriate update
Accumulate the appropriate subset of types of global statistics

Update the selected types of parameters
Optionally do “mixing up”– increase the number of sub-states.
Optionally increase the subspace dimensionS or T .

6.2. Types of re-estimation

Here we review the types of parameters we will be re-estimating in
this model and discuss which of them we can combine on the same
iteration.

The types of model parameters to be re-estimated (excludingpa-
rameters relating to constrained MLLR) are:

• Model vectors and weightsvjkm ∈ ℜS andcjkm ∈ ℜ
• Model projectionsMki ∈ ℜD×(S+1)

• Speaker projectionsNki ∈ ℜD×(T+1)

• Weight projectionswki ∈ ℜS+1

• Within-class variancesΣki ∈ ℜD×D

• Background model means̄µki ∈ ℜD and variances̄Σki ∈
ℜD×D and weightsw̄ki ∈ ℜ.

There are also per-speaker parameters; these relate to speaker
adaptation and are not normally considered part of the model:

• Speaker factorsv(s)
k ∈ ℜT

• Speaker transformsW(s)
k ∈ ℜD×(D+1)

We will probably do these two kinds of re-estimation on separate
passes over each speaker rather than trying to combine them.We
have a choice as to whether to reset the speaker factors and/or trans-
forms to zero each time we do the update of the global parameters,
so we can start estimating them from scratch each time. This would
probably not reach as good a training likelihood but it mightbe a bet-
ter match to test time when we will presumably do a small number
of iterations of adaptation for each speaker.

There are also globally shared (non-speaker-specific) parame-
ters that relate to the use of constrained MLLR with parameter sub-
spaces. They relate to the framework for constrained MLLR estima-
tion which will be described in Sections 12 and 13. They are:

• Initialization of pre-transform and mean scatter for speaker
transforms:Wpre ∈ ℜD×(D+1), D ∈ ℜD×D (diagonal),
and sub-model specific versionsW(k)

pre, Dk.

• Computation of speaker transform basis elements: global ba-
sis matricesW̃b ∈ ℜD×(D+1), 1 ≤ b ≤ B, and sub-model
specific basis matrices̃W(k)

b .

These parameters will be properly introduced starting in Section 12.
Unlike the other globally shared parameters they are not subject to
any form of iterative re-estimation but are estimated just once, typi-
cally after at least a few iterations of model estimation.

6.3. Constraints on combining updates

There are certain constraints on which of the updates above we can
combine on a single iteration. The only practical problem involves
the first three items in the list above. Theoretically, if we update
any of the three we cannot show that the update for any other ofthe
three will increase the data likelihood, given the update formulae we
use. We believe that practically speaking we can combine anytwo of
them, or any three if we introduce an arbitrary constantν < 2

3
that

interpolates between the original parameter values and theupdated
ones, i.e. multiplies the step size byν. Experience seems to bear
this out. The reasoning is as follows. All of these types of updates
are essentially finding the solution of a quadratic objective function.
When we combine several such updates, the danger is that someof
the different classes of parameters are doing the “same thing” or
are effectively the same parameter, and are being updated too many
times, leading to a learning rate that is too high. But any update that
is less than twice as fast as the “ideal” update that just jumps to the
solution of the quadratic objective function, will still converge. This
can easily be checked for a scalar quadratic objective function. It is
when we go above two “non-combinable” updates that we anticipate
practical problems. That is why we need to introduce a constant ν
that interpolates the old and new parameters to bring down the effec-
tive “normalized” learning rate for any effectively sharedparameters
to less than two.

6.4. Warning on update order

In instances where we want to combine global updates, for instance
we want to combine updating the vectorsvjkm with the model pro-
jectionsMki, we will have situations where the update formula for
one parameter type refers to the other parameter type. In that case it
is important in some cases to use the pre-update version of the other
type of parameter. The way we will make this clear is to use a hat
(e.g. x̂) on newly updated parameters, so we might write something
that looks like:

ŷi = yi + si (15)

x̂i = xi + tiyi. (16)
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In this case the parameters with a hat will refer to the next iteration’s
values and we will also understand that any types of parameter we
are not updating will just be copied from one iteration to thenext.
However we slightly abuse this hat notation at times; we willtry to
explain in the text what is meant. We avoid introducing iteration
indices as we already have a proliferation of indices, and some the
updates have nested loops which would require an index for each
loop. The reason why it is sometimes important to keep track of
whether the update refers to the old or updated version of theother
parameter, is that in many cases the statistics for one parameter will
contain expressions that include the other parameter. Then, if in the
update formula for one parameter we use the updated version of the
other parameter it will be inconsistent with the one that is implicitly
the statistics and the update becomes invalid.

7. INITIALIZING AND PRE-TRAINING THE
BACKGROUND GMM

In the techniques we are using, we need to start out with a generic
Gaussian Mixture Model (GMM) that models all speech and silence.
We call this the “background GMM”, although this term is used
in a slightly different sense than in the speaker identification liter-
ature. This GMM will typically have around 500 to 1000 Gaus-
sians in it. In the recipe envisaged here, these would be fullcovari-
ance Gaussians but we also keep around the diagonalized versions
of them for purposes of Gaussian selection for fast computation.
These Gaussians will be trained on some kind of baseline features,
e.g. MFCC+∆+∆∆, possibly with adaptation applied (VTLN, con-
strained MLLR). The initialization and phoneme-independent re-
estimation of these Gaussians is something that we cannot apply a
lot of theory to, and in this section we review the kinds of techniques
that we intend to use for initializing and “pre-training” the mixture
of Gaussians. The way this has been done in previous experiments is
to initialize a mixture of diagonal Gaussians by clusteringthe Gaus-
sians from a baseline system, and to re-estimate them as fullcovari-
ance Gaussians on a subset of the data. We can also consider training
them from scratch, which may involve less code and does not have
the dependency on the baseline system. Something else we cantry
(which has not been done before) is to alternate iterations of train-
ing this full-covariance GMM with iterations of re-estimating con-
strained MLLR transforms per speaker. This means that the trained
GMM will be a “speaker adaptively trained” GMM and we have a
natural way of computing the constrained MLLR transforms without
doing a first pass of recognition. The recipe we give in the rest of
this document does not include this, although it does not require any
new techniques.

7.1. Initializing the GMM from a trained, diagonal system

When initializing the GMM we start with a set of diagonal Gaussians
derived from a baseline HMM set. Let the Gaussians1 ≤ j ≤ J
have meansµj , weightswj and diagonal covariancesΣj . J will
typically be in the tens of thousands. Note that thisJ is not the same
as theJ we have used previously to represent the number of clus-
tered states. Let the dimension be1 ≤ d ≤ D (e.g. D = 40) so
the mean’sd’th dimension will beµjd and the variance’sj’th di-
mension will beσ2

jd. (This is by convention that lower-caseσ refers
to a standard deviation so we need to square it to get a variance; we
could equivalently use the notation(Σj)ii). The weightswj could
just be the weights of Gaussians within the individual HMM states
of the original system, renormalized to sum to one. If the counts of

the states were available these could be used, but it might somewhat
bias the resulting mixture towards silence which might not be good.

7.1.1. Clustering

We will use the notation̄µi andΣ̄i to represent the means and vari-
ances of the background GMM, for1 ≤ i ≤ I with for example
I = 750 typically. The “background” GMM is a generic GMM that
has not yet been adapted to each state. We also define weightsw̄i

for each of the background Gaussians, but it may be best to setthese
to be all the same, in order to encourage the Gaussians to all get
similar occupation counts. In Appendix E we describe an algorithm
to take a large number of diagonal Gaussians and cluster themto a
smaller number. We will use this to initialize the background GMM,
starting from a very large GMM that we obtain by taking all of the
Gaussians in a baseline system, putting all of them into a single mix-
ture and renormalizing the weights to sum to one. At this point we
cluster the Gaussians down toI clusters, each represented by a diag-
onal Gaussian with a mixture weight, using the algorithm described
in Appendix E. We may choose at this point to make the mixture
weights all equal to1/I in order to encourage even distribution of
counts among the cluster centers during further training. Later we
will train these Gaussians as full-covariance Gaussians onunlabeled
training data.

7.1.2. Super-clustering

The use of sub-models as described in Section 4.6 requires that we
cluster the first level of clustered Gaussians into another level of
clusters, so we take the initialI Gaussians and cluster them using
the same algorithm intoK clusters each of sizeIk. It might make
sense to do the super-clustering after re-estimation of theGaussians
derived from the clusters as described in Section 7.2.

7.1.3. Minimum size of clusters

If we want to enforce a minimum size on clusters (e.g. when we do
super-clustering), it is probably most practical to enforce this in a
soft manner as follows. If the “soft” minimum cluster size isM , we
can use a constantk (e.g. k = 0.1/J) and add a “penalty term” to
the objective function of:

∑I

i=1 kmin(0, |Si| −M)2. It is easy to
incorporate this into the algorithm above, as whenever we consider
moving a point from clusteri to i′ we can calculate the value of this
extra term fori andi′ before and after the move, and add it to the
likelihood difference. This approach will stop the minimumcluster
size from being much smaller thanM ; it would be more complicated
to enforce a hard limit without either affecting the clusterquality or
the speed of the algorithm.

7.2. Re-estimating the background GMM prior to training

The proposed recipe will allow the re-estimation of the background
GMM through E-M on some generic speech data, prior to training
the model itself. We would have to do experiments to see whether
this actually helps. Note that we may also re-estimate the back-
ground GMM during the main training procedure itself, but that is a
separate issue from what we are discussing here.

The statistics accumulation for re-estimating the background
GMM is quite easy and we will not write down the equations.
Firstly, just a note on the fast computation of posteriors inthe back-
ground GMM. More details will be given in Section 9.2. As noted
above, we store the diagonal inverse variances, and the firstthing we
do on each frame is to compute the contribution of all the diagonal
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Gaussians’ probabilities to the frame’s likelihood and sort these to
select e.g. the 50 most likely indexesi. The full-variance likelihood
computation is then done using only these preselected indices. The
full-variance statistics will be accumulated given the resulting pos-
teriors. A further stage of pruning takes place before we accumulate
any statistics so that we can avoid using very tiny counts.

The re-estimation formulae for the full variance Gaussiansare
too obvious to write here. Various extra details should be noted,
though. On each iteration of update we also store the diagonal of the
re-estimated variance, for purposes of fast likelihood evaluation. We
may set the weights to be all the same rather than using the normal
formula. If we encounter an indexi for which the data count is too
small (e.g. less than twice the dimensiond), an easy thing to do is to
set the updated mean and variance for indexi to be equal to thepre-
update version of the mean and variance for some other index,e.g.
i+ 1. Choosing the pre-update value ensures that it will differ from
the post-update version of the selected other index. For some data
sources, a significant amount of the data will be linearly dependent
and this can lead to singular covariance matrices. A suitable means
of preventing this is to floor the covariance matrices to somesmall
multiple of the global covariance. A process for flooring symmetric
matrices is described in Appendix I.

7.3. Overall order of preparing the background GMM

Here we summarize the procedures we intend to use to prepare the
background GMM prior to training the main model. We describethe
most general procedure with all the bells and whistles; someof these
are optional (in particular, the speaker adaptation).

1. Cluster the Gaussians a baseline model toI clusters; each
cluster is a diagonal Gaussian.

2. For several iterations (e.g. 3 or 4):

• For each speaker:

– Optionally re-estimate constrained MLLR trans-
form for the speaker

– Accumulate statistics for full-covariance GMM
parameter update

• Update full-covariance GMM parameters.

• Possibly set all weights to be the same after re-
estimation.

• Make diagonal GMM parameters as (diagonalized)
copy of full ones.

3. Cluster theI Gaussians toK super-clusters.

8. INITIALIZATION OF MODEL

In this section we describe the initialization of the main model.

8.1. Overview of model initialization

The procedure we describe here for model initialization is different
from that described in [2]. In that document, we accumulatedpruned
count and mean statistics over the product of HMM statesj by Gaus-
sian indicesi and used them in an iterative update procedure in mem-
ory to update the model vectorsvjm (there were no sub-modelsk at
that time) and transformsMi andwi, starting from random initial-
ization of the model vectors. The disadvantage of that approach was
that it involved a substantial amount of extra coding as it required
a whole parallel accumulation and update apparatus and a parallel

statistics format. Here we describe a much simpler approachthat
should reach the same likelihood values with only one or two extra
iterations over the data. Something that we should probablyinvesti-
gate is whether it is important to first train to convergence with the
Gaussian posteriors of the original background GMM (which is ef-
fectively what we were doing with the old approach). This caneasily
be simulated in the current setup by using very tight pruningbeams
when we prune using the background model, or by directly using the
Gaussian posteriors of the background model for the first fewiter-
ations of training which can be introduced as an option in thecode
(i.e. setγjkmi(t) =

N (xt;µ̄ki,Σ̄ki)
∑

k,i N (xt;µ̄ki,Σ̄ki)
).

The model initialization procedure that we describe here does
not allow us to make the subspace size greater than the feature di-
mension. To get larger sizes we can increase it at a later stage.

8.2. Feature normalizing transform

Prior to the main model initialization we need to obtain a feature
normalizing transform that will make the within class variance unit
and the between class variance diagonal. This will be used inthe ini-
tialization of or in increasing the dimension of the projectionsMki

andNki. It can be derived from the parameters of the background
GMM during the initialization of the main model. We compute
the within-class and between-class variance as follows (assuming
∑I

i=1 w̄i = 1):

ΣW =
I
∑

i=1

w̄iΣ̄i (17)

µ =

I
∑

i=1

w̄iµ̄i (18)

ΣB =

(

I
∑

i=1

w̄iµ̄iµ̄
T
i

)

− µµ
T (19)

We want a transformation that makesΣW unit and diagonalizes
ΣB. We first do the Cholesky decompositionΣW = LLT , com-
puteS = L−1ΣBL−T , and do the singular value decomposition
S = UDVT . SinceS is symmetric positive semi-definite this im-
plies S = UDUT (see Appendix B). It should be verified that
the diagonal elements ofD and the corresponding columns ofU
are sorted by decreasing eigenvalue. The transformation wewant is
thenT = UTL−1. This transform should be recorded as it will be
needed later.

8.3. Initialization if offsets are used

The initialization in the case that we plan to use offsets on the vectors
(i.e. if we are using terms likev+) is as follows. We require that
S ≤ D andT ≤ D.

Mjk = 1 (20)

cjk1 =
1

K
(21)

vjk1 = 0 ∈ ℜS . (22)

Mki =
[

(

T
−1)

1:D,1:S
; µ̄ki

]

(23)

Nki =
[

(

T
−1)

1:D,1:T
; 0
]

(24)

wki = 0 ∈ ℜS+1. (25)

The notation
(

T−1
)

1:D,1:S
means the firstS columns ofT−1.
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8.4. Initialization if no offsets are used

If no offsets will be used on the vectors we need to initializethe
vectors to a nonzero value, and we choose to put this in the first
dimension. Note that below,e1 is a unit vector in the first dimension,
i.e. [ 1 0 . . . 0]. We require thatS ≤ D + 1 andT ≤ D.

Mjk = 1 (26)

cjk1 =
1

K
(27)

vjk1 = e1 ∈ ℜS . (28)

Mki =
[

µ̄ki ;
(

T
−1
)

1:D,1:S−1

]

(29)

Nki =
(

T
−1)

1:D,1:T
(30)

wki = 0 ∈ ℜS . (31)

8.5. Increasing the subspace dimension

It is possible to increase the phonetic or speaker subspace dimension
after some iterations of training. Typically a subspace dimension
slightly larger than the feature dimension is optimal. We describe
this here as it is a similar process to the initialization, although it
would take place during model update. Note that we must wait at
least 2 iterations before doing this, as we need to wait for the matri-
cesMki andNki to deviate from their initial values: they do not do
so on the first iteration because the vectors have not yet beentrained
at that point.

Now we describe how to increase the subspace dimension if we
are using offset featuresv+. Assuming we are increasing the model
subspace dimension fromS toS′ (andS′−S cannot exceed D), we
will have (if using offsets):

M̂ki =
[

mki(1) . . .mki(S)
(

T
−1)

1:D,1:(S′−S)
mki(S + 1)

]

,

(32)
wheremki(s) is thes’th column ofMki, and withT as computed
in Section 8.2. We have a similar thing for the speaker transform:

N̂ki =
[

nki(1) . . .nki(T )
(

T
−1)

1:D,1:(T ′−T )
nki(T + 1)

]

.

(33)
At this point we also need to extend the model and speaker vectors
vjkm andv(s)

k by appending the appropriate number of zerosS′−S
orT ′−T , and extend the weight projectionswki by insertingS′−S
zeros just before the final element.

If not using offsets, the step of increasing the dimensions is a
little simpler:

M̂ki =
[

Mki

(

T
−1
)

1:D,1:(S′−S)

]

(34)

N̂ki =
[

Nki

(

T
−1
)

1:D,1:(T ′−T )

]

. (35)

In this case we extend the model and speaker vectorsvjkm andv(s)
k

by appending the appropriate number of zerosS′−S orT ′−T , and
the weight projectionswki would also be extended by appending
S′ − S zeros at the end and not by inserting them before the final
element.

8.6. Initializing the within-class variances

The within-class variancesΣki are initialized to be equal to the full-
covariance background GMM’s within-class variances

Σki = Σ̄ki. (36)

8.7. Initializing the speaker transforms

The speaker transformsW(s)
k are all initialized to the “default”

transform I−D+1, by which we mean the identity matrix of size
D + 1 with the last row removed. Typically the speaker transforms
would not be stored centrally but would be generated in memory for
each training or test speaker, so we would not have to do this.

9. LIKELIHOOD EVALUATION

In this section we describe the model likelihood computation proce-
dure, which is needed both in decoding and statistics accumulation.

9.1. Global and speaker-specific pre-computation

Prior to seeing any feature data there are some quantities that need
to be pre-computed. There are the per-Gaussian normalizers:

njkmi = log cjkm + logwjkmi − 0.5(log detΣki

+D log(2π) + µ
T
jkmiΣ

−1
ki µjkmi) (37)

with:

µjkmi = Mkiv
+
jkm. (38)

These normalizers take long enough to compute that it is worthwhile
storing them on disk, although they should be in a separate file from
the model parameters because they take up a lot of space and can
easily be regenerated. In our previous work in [1, 2], these were
computed in parallel and combined into a single file on disk. How-
ever, we do not believe it is necessary to compute them in parallel
here since there are are certain steps in the update which without ad-
ditional optimizations and approximations (which we have not de-
scribed here) will take as long as computing the normalizers. This
should be a manageable amount of time (a few minutes) as long as
the models are reasonably small or are broken up via the use ofsub-
models. We also need to compute the speaker-specific offsets:

o
(s)
ki = Nkiv

(s)
k

+
, (39)

and the log determinants of the per-speaker constrained MLLR trans-
forms:

logdet
(s)
k = log |detA(s)

k |, (40)

whereA(s)
k is the square part of transformW(s)

k .

9.2. Gaussian selection

The first stage in the process on each frame is Gaussian selection, in
which we use first the diagonal version of the background model and
then the full-covariance version, to select a set of Gaussian indices to
limit our further computation. The set of selected indices will be a set
of pairs(k, i) reflecting the two level structure of the model with sub-
models. We have two forms of adaptation available: the constrained
MLLR transformsW(s)

k and the speaker vectorsv(s)
k . We have a

choice as to whether to apply one or both of these to the two phases
of Gaussian selection (diagonal and full). The mathematicsbelow
assumes we apply both forms of adaptation to both phases, butthis
can be experimented with.

Prior to Gaussian selection we pre-compute speaker adaptedfea-
tures for each sub-model indexk:

xk(t) = W
(s)
k x

+(t). (41)
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During Gaussian selection we will also compute on the fly the fol-
lowing quantity, which reflects the factor-based adaptation:

xki(t) = xk(t)− o
(s)
ki , (42)

with o
(s)
ki as computed in Equation (39).

The process of Gaussian selection is as below, with for example
pruning parametersP diag = 50 andP = 10. Note that we have a
diagonal version of the background model with mean and variance
µ̄

diag
ki and andΣ̄diag

ki . This is primarily used as a speedup for the
full-covariance model, and the mean potentially differs aswell as
the variance because we may train the two models with different
amounts of adaptation.

Fork = 1 . . .K,
For i = 1 . . . Ik, compute:

log pdiag (x(t), k, i) = logdet
(s)
k + log w̄ki . . .

+ logN (xki(t)|µ̄diag
ki , Σ̄diag

ki ).
Prune to theP diag pairs(k, i) with highestlog pdiag (x(t), k, i)
For each of these top pairs, compute:

log p(x(t), k, i) = logdet
(s)
k + log w̄ki . . .

+ logN (xki(t)|µ̄ki, Σ̄ki)
Prune to theP pairs(k, i) with highestlog p(x(t), k, i)

9.3. Pre-computation per frame

After Gaussian selection there are certain quantities thatshould be
computed for each of the selected pairs of indices(k, i). We com-
pute and store:

xki(t) = xk(t)− o
(s)
ki (43)

zki(t) = M
T
kiΣ

−1
ki xki(t) (44)

nki(t) = logdet
(s)
k − 0.5xki(t)

T
Σ

−1
ki xki(t)

+zki(t)(S+1). (45)

soxki(t) is the “speaker-adapted” version of the features used for
Gaussian index(k, i), zki(t)

− is like a “covector” to quantities
vjkm (we will dot them to get the linear part of the likelihood), and
nki(t) is a normalizer per frame that contains terms independent of
the model.

9.4. Gaussian likelihood computation

We can compute the contribution to the likelihood from statej, mix-
turem and Gaussian indexk, i as:

log p(x(t), k,m, i|j) = nki(t) + njkmi + zki(t)
− · vjkm. (46)

When doing the computation for a particular statej, we will iterate
over the preselected set ofP pairs(k, i), and then for1 ≤ m ≤Mjk

we will compute the above quantity. We will accumulate an array of
the tuples(k, i,m, log p(x(t), k,m, i|j)) and do pruning such that
if some element has probability much less than the best (e.g.a beam
of 5), we discard it. It may be helpful to avoid adding elements to the
array in the first place if they are lower than the current maximum
minus the specified beam.

We then compute the total likelihood as:

log p(x(t)|j) = log
∑

k,m,i

p(x(t), k,m, i|j). (47)

Note that typically these kinds of summations are done usinga “log
add” function that computesf(a, b) = log(exp a + exp b) without
ever calculatingexp a or exp b directly, in case the floating point
range is too small.

10. ACCUMULATION

10.1. Pruned posterior computation

All of the forms of accumulation require us to compute posteriors
over the individual Gaussians, each represented by the 4-tuple of
indices (j, k, i,m). This can be done using the state likelihoods
log p(x(t)|j) and the per-Gaussian likelihoodsp(x(t), k,m, i|j)
described in the previous section. The posteriors of Gaussians are
given as follows:

γjkmi(t) ≡ p(j, k,m, i|x(t)) (48)

= p(j|x(t))p(x(t), k,m, i|j)
p(x(t)|j) , (49)

where p(j, k,m, i|x(t)) and p(j|x(t)) are as defined in Equa-
tions (46) and (47), andp(j|x(t)) ≡ γj(t) will typically be supplied
to the module that does these computations, e.g. it will be a zero
or one posterior derived from Viterbi alignment, or will be derived
from some kind of forward backward algorithm. In order to geta
good initialization, state posteriorsγj(t) derived from a baseline
system should be used for at least the first few iterations of training.

We use (49) to compute posteriors of the pruned list of tuples
(j, k,m, i). We then do a further stage of pruning. Most of the ac-
cumulation steps will require more computation than the dotprod-
uct that was required to compute the likelihoods in (46), so it is
worthwhile to prune more but we want to preserve expectations dur-
ing estimation. First we decide on a minimum posterior value, say
f = 0.125. Then we compute pruned posterior values:

γ̃jkmi(t) = randprune(γjkmi(t), f) (50)

randprune(x, f) =







x ≥ f → x

x < f →
{

f with probability x
f

0 otherwise
(51)

We will use these pruned posterior values in statistics accumulation.

10.2. A note on storing posteriors compactly

It is possible to store the posteriors more compactly than using float-
ing point values. We describe this here but it is not recommended
for a basic implementation. We can use a modified version of the
randomized pruning described above to express all posteriors as an
integer multiple off . This can be combined with compression tech-
niques that compress small values in memory– a convenient method
is to store a count in one character, using positive values tostore
the actual counts and negative values to store offsets into aseparate
resizable array for “overflow” values larger than 127. If we keep a
separate resizable array for every 128 elements in the overall array
of integer values we are compressing we will always be able tostore
the index, so using this method it is possible to store integers in very
little more than 1 byte, assuming most of the integers have values
less than 128.

We do not anticipate that this will be essential– the use of “sub-
models” (indexk) reduces the amount of count statistics, and any-
way (for ML training) the count statistics only take the sameamount
of memory as the normalizers which we have to store anyway, sothe
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normalizers would also have to be compressed (in fact, for the work
reported in [1, 2], we also compressed the normalizers in a quite
similar way).

10.3. Counts accumulation

The count statistics should be computed on all iterations asthey ap-
pear in the updates of most of the parameter types:

γjkmi =
∑

t

γ̃jkmi(t). (52)

10.4. Model vectors accumulation

The accumulation needed to re-compute the vectorsvjkm is:

yjkm =
∑

t,i

γ̃jkmi(t)zki(t)
−, (53)

with zki(t) as given by Equation (44), and·− refers to removing the
last vector element. This is the linear term in the auxiliaryfunction
for vjkm; the quadratic term can be worked out from the counts.

10.5. Model projections accumulation

The sufficient statistics for the model projectionsMki are

Yki =
∑

t,j,m

γ̃jkmi(t)xki(t)v
+
jkm

T
. (54)

If we left-multiply this by Σ−1
ki it is the linear term of the auxil-

iary function inMki, but it is more convenient to do that multipli-
cation during the update. These statistics are also needed for the
re-estimation of the within-class variancesΣki.

10.6. Speaker vectors accumulation

The accumulation needed to re-compute the per-speaker vectorsv(s)
k

is analogous to the model vectors accumulation in Section 10.4. We
first define a speaker-space analogue toxki(t), in which we treat the
main model as an offset:

xjkmi(t) = xk(t)− µjkmi, (55)

with the un-speaker-adapted meanµjkmi as defined in Equa-
tion (38). It may be helpful during statistics accumulationto cache
this quantityµjkmi on each frame for which the pruned posterior
γ̃jkmi is nonzero, since it appears in several expressions. It cannot be
precomputed globally because it would take up too much memory;
caching is possible but would not affect the speed of the algorithm
very much. We then need to define a speaker-subspace analogueto
the “co-vector”zki(t) which we defined in Equation (44). We have
it with:

zjkmi(t) = N
T
kiΣ

−1
ki xjkmi(t). (56)

It will be useful to pre-compute the quantityNT
kiΣ

−1
ki before this

type of accumulation. The statistics are accumulated below, where
T (s) is the set of frames that cover the data for speakers:

γ
(s)
ki =

∑

t∈T (s),j,m

γ̃jkmi(t) (57)

y
(s)
k =

∑

t∈T (s),i,j,m

γ̃jkmi(t)zjkmi(t)
−. (58)

10.7. Speaker projections accumulation

Here are the statistics to update the speaker projectionsNki. (Note
that this is a global type of parameter, not a speaker specificone).
These are analogous to the statisticsYki for the model projections
Mki:

Zki =
∑

t,j,m

γ̃jkmi(t)xjkmi(t)v
(s(t))
k

+T

, (59)

where we writes(t) to mean the speaker active on framet. We also
have to accumulate a weighted outer product of the speaker vectors:

Rki =
∑

s,k





∑

t∈T (s),j,m

γ̃jkmi(t)



v
(s)
k

+
v
(s)
k

+T

, (60)

and it would be most efficient to only update the matrix once per
speaker using cached counts, although this is not very critical. This
quantity is symmetric so only the lower triangular part should be
stored.

10.8. Statistics for within-class variances and full covariance
background model

The following statistics are needed in order to update the within-
class variancesΣki and (if desired) the background model parame-
ters:

γki =
∑

t,j,m

γ̃jkmi(t) (61)

mki =
∑

t,j,m

γ̃jkmi(t)xki(t) (62)

Ski =
∑

t,j,m

γ̃jkmi(t)xki(t)xki(t)
T . (63)

Note thatSki is a symmetric quantity so we can store the lower tri-
angular part. It is common to store the lower triangle of a matrix
of sizeN × N as a vector of size1

2
N(N + 1). The model mean

information required for the within-class variance updatecan be de-
rived from the weight statisticsγjkmi, the model parameters and the
statisticsYki.

10.9. Statistics for speaker transforms

The statistics accumulation for constrained MLLR transformations
is based on Equations (187) to (189) and can be written as follows:

β
(s)
k =

∑

t∈T (s),j,m,i

γ̃jkmi(t) (64)

K
(s)
k =

∑

t∈T (s),j,m,i

γ̃jkmi(t)Σ
−1
ki µ

(s)
jkmix(t)

+T
(65)

S
(s)
ki =

∑

t∈T (s),j,m

γ̃jkmi(t)x(t)
+
x(t)+

T
, (66)

where we need to compute:

µ
(s)
jkmi = µjkmi + o

(s)
ki , (67)

with µjkmi as given in Equation (38) ando(s)
ki as given in Equa-

tion (39).
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11. UPDATES

In this section we describe the various kinds of parameter updates
that can be done, along with a brief derivation for each. Derivation
formulae are written in gray, so the reader who is only interested in
implementation can easily skip them.

11.1. Model vectors update

Here we consider the update of the model vectorsvjkm. Before
doing the update we need to pre-compute the quantities:

Hki = M
T
kiΣ

−1
ki Mki (68)

γjkm =
∑

i

γjkmi. (69)

Remembering that the effect of speaker transformsW
(s)
k and

speaker projections and subspaceNki andv
(s)
k are absorbed into

the featuresxki(t), the part of the auxiliary function invjkm that
relates to the means (not the weights) is:

Q1(vjkm) = K − 0.5
∑

t,i

γ̃jkmi(t) . . .

(xki(t)−µjkmi)
T
Σ

−1
ki (xki(t)−µjkmi) (70)

= K′ +
∑

t,i

γ̃jkmi(t)µ
T
jkmiΣ

−1
ki xki(t)

−0.5
∑

i

γjkmiµ
T
jkmiΣ

−1
ki µjkmi (71)

= K′ +
∑

t,i

γ̃jkmi(t)v
+
jkm

T
M

T
kiΣ

−1
ki xki(t)

−0.5
∑

i

γjkmiv
+
jkm

T
M

T
kiΣ

−1
ki Mkiv

+
jkm (72)

= K′′ + vjkm · yjkm

−0.5
∑

i

γjkmiv
+
jkm

T
Hkiv

+
jkm (73)

= K′′′ + vjkm · (yjkm−
∑

i

γjkmih
−
ki(D+1))

−0.5
∑

i

γjkmiv
T
jkmH

−−
ki vjkm, (74)

wherehki(D+1) is the last row ofHki, H
−−
ki is Hki with the last

row and column removed andyjkm is as defined in Equation (53).
Now we consider a second part of the auxiliary function

Q2(vjkm) which relates to the effect on the weights:

Q2(vjkm) =
∑

i

γjkmi logwjkmi (75)

=
∑

i

γjkmi

(

wki · v+
jkm−

log
∑Ik

i′=1
exp(wki′ · v+

jkm)
)

(76)

Here we can use the inequality1 − (x/x̄) ≤ − log(x/x̄)
(which is an equality atx = x̄) to modify the auxiliary func-
tion as follows (note,x corresponds to the normalizing term

∑Ik
i′=1 exp(wki′ · v+

jkm) andx̄ to its current value):

Q′
2(vjkm) = K +

∑

i

γjkmi

(

wki · v+
jkm

−
∑Ik

i′=1 exp(wki′ · v+
jkm)

∑Ik
i′=1

exp(wki′ · v̄+
jkm)

)

, (77)

wherev̄jkm is the current value of the speaker vector. Note that the
denominator of the fraction is a constant. The motivation here is to
simplify the calculus; the effect on convergence should be minimal
as only one dimension of the problem is affected. Then we use a
quadratic approximation toexp(x) aroundx = x0, i.e. exp(x) ≃
exp(x0)(1+(x−x0)+0.5(x−x0)

2), and discard the terms constant
in x to getexp(x) ≃ K+(x(1−x0)+0.5x2) exp(x0). This leads
us to:

Q′′
2 (vjkm) = K′ +

∑

i γjkmi

(

wki · v+
jkm − (78)

∑Ik
i′=1

(

wki′ ·v
+
jkm

(1−wki′ ·v̄
+
jkm

)+0.5(wki′ ·v
+
jkm

)2
)

exp(wki′ ·v̄
+
jkm

)

∑Ik
i′=1

exp(wki′ ·v̄
+
jkm

)

)

,

and we can simplify this usinḡwjkmi =
exp(wki·v̄+

jkm
)

∑

i′
exp(wki·v̄+

jkm
)

to:

Q′′
2 (vjkm) = K′ +

∑

i γjkmi wki · v+
jkm

−γjkm
∑Ik

i′=1 w̄jkmi′

(

wki′ · v+
jkm(1−wki′ · v̄+

jkm)

+0.5(wki′ · v+
jkm)2

)

. (79)

We can write it in terms of just thevjkm (getting rid of the·+) as:

Q′′
2 (vjkm) = K′′ +

∑

i γjkmi w
−
ki · vjkm

−γjkm
∑Ik

i′=1 w̄jkmi

(

w
−
ki′ · vjkm(1−w

−
ki′ · v̄jkm)

+0.5
(

w
−
ki′ · vjkm

)2
)

. (80)

Certain extra terms appear here (if offsets are used) but aresimpli-
fied out.

Note that at this point we have no guarantee that increasing the
auxiliary function will increase the objective function, because the
quadratic approximation to an exponential function is not alower
bound. We will just ignore this problem as it affects the estimation
of the vectorsvjkm, because we believe that the quadratic term will
be dominated by the means rather than the weights in most cases. In
the main situation where we expect an exception to this, i.e.when
only one Gaussian has substantial nonzero counts for a particular
sub-state, the smoothing process described in Section 11.1.1 should
prevent divergence. We will deal with the question of convergence
more rigorously when it is time to estimate the weight projections
wki.

DefiningQ(vjkm) = Q1(vjkm) + Q′′
2 (vjkm) and gathering

together the linear and quadratic terms inv+
jkm from Equations (74)
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and (80), we have:

Q(vjkm) = K + vjkm · gjkm − 0.5vT
jkmHjkmvjkm (81)

gjkm = yjkm−
∑

i

γjkmih
−
ki(D+1) (82)

+
∑

i

ŵ
−
ki

(

γjkmi − γjkmwjkmi(1− ŵ
−
ki · vjkm)

)

Hjkm =
∑

i

γjkmiH
−−
ki

+γjkm
∑

i

ŵjkmiŵ
−
ki ŵ

−
ki

T
(83)

v̂jkm = H
−1
jkmgjkm. (84)

Note that we use the notation̂wki andŵjkmi to mean that we should
use the latest value if available, i.e. if the weight projectionswki

have been updated before the vectorsvjkmi. BecauseHjkm can
have poor condition we should solve Equation (84) using the proce-
dure described in Appendix G.

11.1.1. Smoothing

We routinely use a different approach that also handles the problem
of singular matrices when estimating the parametersvjkm. This was
originally developed as a workaround for the problem of singular
matrices but is retained because it may improve the generalization
of the model. It can be described in terms of a prior over the vectors
vjkm where the prior is not estimated from the data but is based on
an ad hoc but dimensionally appropriate formula. In this sense it
is similar to the Maximum A Posteriori (MAP) adaptation formulas
based on a smoothing valueτ that are used in the HTK toolkit [7].
We modifyHjkm andgjkm as follows:

H
′
jkm = Hjkm + τvec

H
(sm)
k (85)

g
′
jkm = gjkm + τvec

y
(sm)
k (86)

H
(sm)
k =

1
∑

i γki

∑

i

γkiHki (87)

y
(sm)
k =

1
∑

i γki

∑

j,m

yjkm, (88)

(89)

with γki =
∑

j,m γjkmi, and to useH′
jkm and g′

jkm in place
of Hjkm andgjkm in Equation (84), for some chosenτvec, e.g.
20. This smoothing term ignores the effect of the vectors on the
weights because we believe that is less important and to make
the computation of the smoothing terms faster. For each sub-
modelk this smoothing formula equates to a prior centered around

H
(sm)
k

−1
y
(sm)
k and with a variance equal to1

τvecH
(sm)
k

−1
. The

center of prior is the same as the Maximum Likelihood estimate of
the vectors for that sub-model if we forced them to all have the same
value (and ignoring the effect on the weights).

We should still use the robust techniques described in Ap-
pendix G to solve the inversion problem, in case the modifiedH′

jkm

is still poorly conditioned.
In Appendix C we will describe a more sophisticated alternative

technique to handle the problem of over-training, based on estimat-
ing priors.

11.1.2. Auxiliary function improvement

We can test the auxiliary function improvement using Equation (81),
measuring its difference in value before and after the update. Note
thatK just means an arbitrary constant, which we can ignore. The
smoothed value ofH′

jkm should not be substituted forHjkm in
Equation (81). It would be possible to get closer to the true like-
lihood improvement by using the exact auxiliary function for the
weights (Equation (75)) rather than the quadratic approximation, but
that is probably not necessary. Refer to Appendix C for a more
principled solution to the estimation of the vectors, whichis able
to model correlations between different sub-models.

11.2. Sub-state weights estimation

The estimation of the sub-state weightscjkm associated with the
vectorsvjkm is simple. The auxiliary function is:

Q(c···) =
∑

j,k,m

γjkm log cjkm, (90)

with the data countγjkm as defined in Equation (69). The sub-state
weights must sum to 1 over allk, i for a particularj, so the Maxi-
mum Likelihood update is:

ĉjkm =
γjkm

∑K

k=1

∑Mjk

m=1 γjkm
. (91)

The objective function change can be computed by measuring Equa-
tion (90) before and after the update. A suitable smoothing approach
to avoid getting zero weights (which might cause problems due to the
interaction with pruning) is to define a valueτ (w), e.g. set to 5, and
do:

ĉjkm =
γjkm + τ (w)

∑K

k=1

∑Mjk

m=1 (γjkm + τ (w))
. (92)

11.3. Sub-state splitting

As in a normal mixture of Gaussians system, it is necessary tosplit
the sub-states represented by the vectorsvjkm in order to eventu-
ally reach some target number of sub-states. For instance, we might
have a target number ofT = 30000 for a system withJ = 7000
states. A robust way to assign the number of sub-states for each
(state, sub-model) pair (j, k) is to have them proportional to some
small power of the total data countγjk of the sub-model of the
state, e.g. to the powerp = 0.2 (e.g. as supported in HTK by
thePS command inHHEd [7]), so we would have a targetT (j, k) =
max(1, ⌊0.5 + (Tγp

jk/
∑J

j=1 γ
p
jk)⌋). The total number may differ

somewhat from the target due to rounding. We would designatea
subset of the iterations as iterations to split on, and wouldtypically
separate these by a few iterations to give the previously split vectors
time to separate. On each iteration that we intend to split on, we
would designate a target numberT of sub-states that would gradu-
ally rise to the final desired number, and work out the state-specific
targetsT (j, k) accordingly. Within a statej and sub-modelk, after
working out how many mixtures we have to split we would choosea
subset of mixturesm to split based on highest countγjkm. The split-
ting should take place after other phases of update, to avoidthe need
to split the statistics. Let us suppose we are splitting vector vjkm to
the two vectorsvjkm andvjkm′ , with m′ a newly allocated mixture
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index. We would split the weight and the vector as follows:

ĉjkm = 1
2
cjkm (93)

ĉjkm′ = 1
2
cjkm (94)

r = Normally distributed random (95)

v̂jkm = vjkm + 0.1H
(sm)
k

−0.5
r (96)

v̂jkm′ = vjkm − 0.1H
(sm)
k

−0.5
r, (97)

where we useH(sm)
k as defined in Equation (87). This formula is

analogous to splitting a Gaussian mean by 0.1 standard deviations,
e.g. as done in HTK [7].H(sm)

k is analogous to a precision (inverse
covariance matrix) so we get something like a standard deviation by
taking it to the power−0.5.

11.4. Update for model projections

Now let us consider the auxiliary function for the model projection
parameterMki. It is similar to the one for the vectors in Equa-
tion (70):

Q(Mki) = K − 0.5
∑

t,j,m

γ̃jkmi(t) . . .

(xki(t)−µjkmi)
T
Σ

−1
ki (xki(t)−µjkmi) (98)

= K′ +
∑

t,j,m

γ̃jkmi(t)µ
T
jkmiΣ

−1
ki xki(t)

−0.5
∑

j,m

γjkmiµ
T
jkmiΣ

−1
ki µjkmi (99)

= K′ +
∑

t,j,m

γ̃jkmi(t)v
+
jkm

T
M

T
kiΣ

−1
ki xki(t)

−0.5
∑

j,m

γjkmiv
+
jkm

T
M

T
kiΣ

−1
ki Mkiv

+
jkm (100)

At this point we do the substitutionM′
ki = Σ−0.5

ki Mki. Then
Equation (100) becomes:

Q(Mki) = K′ +
∑

t,j,m

γ̃jkmi(t)v
+
jkm

T
M

′
ki

T
Σ

−0.5
ki xki(t)

−0.5
∑

j,m

γjkmiv
+
jkm

T
M

′
ki

T
M

′
kiv

+
jkm (101)

= K′ + tr (M′
ki

T
Σ

−0.5
ki Yki)

−0.5tr (M′
kiQkiM

′
ki

T
) (102)

where

Yki =
∑

t,j,m

γ̃jkmi(t)xki(t)v
+
jkm

T
(103)

Qki =
∑

j,m

γjkmiv
+
jkmv

+
jkm

T
, (104)

and note thatYki is part of the statistics (Equation (103) is the same
as (54)) andQki can be worked out from the count statistics and the
model vectors. Now,ATA is the same as the same as

∑

j aja
T
j ,

whereaj are the rows ofA. So the auxiliary function of Equa-
tion (102) can be separated across the rowsm′

kid of M′
ki. Defining

Y
′
ki = Σ

−0.5
ki Yki (105)

andy′
kid as thed’th row of Y′

ki, we have:

Q(m′
kid) = m

′
kidy

′
kid − 0.5m′

kid
T
Qkim

′
kid (106)

m̂
′
kid = Q

−1
ki y

′
kid (107)

M
′
ki = Y

′
kiQ

−1
ki (108)

M̂ki = Σ
0.5
ki M̂

′
ki. (109)

so the update is:

M̂ki = YkiQ
−1
ki . (110)

If we are on the first iteration of model update thenQki will not be
invertible and the update of the model projections should beskipped.
To measure the auxiliary function change we can use:

Q(Mki) = tr(MT
kiΣ

−1
ki Yki)− 0.5tr(Σ−1

ki MkiQkiM
T
ki), (111)

and measure the difference in this quantity before and afterthe up-
date.

In Section J we describe an approach to estimate a prior over the
matricesMki and estimate them on a Maximum A Posteriori basis;
however, it is not clear that this is helpful.

11.5. Update for speaker projections

There is a symmetry between the model and speaker factors (except
as regards the weights, which do not concern us here). Therefore
the update for the speaker projections follows the same pattern as
Section 11.4 above, except that the quadratic term corresponding to
Qki above is now obtained during accumulation rather than from the
model, since the speaker factors would typically not be stored with
the model. This quantity we callRki and it is part of the accumu-
lated statistics, see Equation (60). We also stored a lineartermZki

in Equation (59). The update is:

N̂ki = ZkiR
−1
ki , (112)

and the auxiliary function change can be measured by taking the
difference before and after update, of:

Q(Nki) = tr (NT
kiΣ

−1
ki Zki)− 0.5tr (Σ−1

ki NkiRkiN
T
ki). (113)

11.6. Update for speaker vectors

The update for the speaker vectorsv
(s)
k is a speaker-specific update.

We use the statistics accumulated in Equations (57) and (58). It is
analogous to the update for the model vectors, except without the
extra terms relating to the weights. We skip the derivation because it
is just a simpler form of the derivation in Section 11.1. Prior to esti-
mating vectors for any speaker, we need to compute the quantities:

H
spk
ki = N

T
kiΣ

−1
ki Nki, (114)

which are speaker-subspace versions of (68). The auxiliaryfunction
and update rule are:

Q(v(s)
k ) = K + v

(s)
k · g

(s)
k − 0.5v

(s)
k

T
H

(s)
k v

(s)
k (115)

H
(s)
k =

∑

i

γ
(s)
ki H

spk
ki

−−
(116)

g
(s)
k = y

(s)
k −

∑

i

γ
(s)
ki h

(spk)

ki(D+1)

−
(117)

v̂
(s)
k = H

(s)
k

−1
g
(s)
k . (118)
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This update is sufficient when there is enough data to estimate each
vectorv(s)

k . However, it could lead to over-training otherwise, es-
pecially for largeK. It would be nice to be able to estimate some
kind of prior over the whole set of vectorsv(s)

k , but this would re-
quire some effort becauseK might be quite large so the dimension of
the concatenated vector would be high, and also because we would
have to estimate the prior from estimates of the vectors. Instead, for
now we will opt for a much simpler approach that uses aτ value to
smooth eachv(s)

k back to a globalv(s) (shared for allk). First we
estimate a globally shared value ofv(s):

H
(s) =

∑

k

H
(s)
k (119)

g
(s) =

∑

k

g
(s)
k (120)

v̂
(s) ← H

(s)−1
g
(s). (121)

Then we interpolate between the global and sub-model specific ver-
sion of the vector, as follows.

γ
(s)
k =

∑

i

γ
(s)
ki (122)

v̂′(s)
k =

γki

τ spk + γ
(s)
k

v̂
(s)
k +

τ spk

τ spk + γ
(s)
k

v̂
(s) (123)

The valueτ spk may be interpreted as a number of frames; we suggest
a value ofτ spk = T (the same as the speaker subspace dimension)
but it is worth experimenting with. Note that this techniqueassumes
that the speaker subspaces for the different values ofk are related
in some sensible way. We can ensure this by settingτ spk to a very
large value (e.g. 1.0e+10) for the first few iterations of training, say
the first ten iterations, and thereafter leaving it at least as large as
the value to be used in testing. To compute the change in auxiliary
function, we can work out the change in Equation (115) beforeand
after update.

11.7. Update for weight projections

The weight projectionswki are updated using an approach similar
to the one used in Section 11.1 for the model vectors. The auxiliary
function for the set of weight projection vectorswk1 . . .wkIk for
sub-modelk is as follows (usingwk· to refer to this whole set of
vectors):

Q(wk·) =
∑

j,m,i

γjkmi logwjkmi

=
∑

j,m,i

γjkmi

(

wki · v+
jkm

− log

Ik
∑

i′=1

exp(wki′ · v+
jkm)

)

. (124)

Following similar steps to Section 11.1 using the inequality 1 −
(x/x̄) ≤ − log(x/x̄), wherex̄ is the current value ofx, we arrive
at:

Q′(wk·) = K +
∑

j,m,i

γjkmi

(

wki · v+
jkm

−
∑Ik

i′=1 exp(wki′ · v+
jkm)

∑Ik
i′=1 exp(w̄ki′ · v+

jkm)

)

, (125)

wherew̄ki is the current value of the weight projection vector, which
is equivalent to:

Q′(wk·) = K′ +
∑

j,m,i

γjkmi

(

wki · v+
jkm

−
∑

j,m

γjkm
exp(wki · v+

jkm)
∑Ik

i′=1
exp(w̄ki′ · v+

jkm)

)

, (126)

with γjkm =
∑

i γjkmi. Note that at this point the auxiliary
function can be separated into terms for eachi, with Q′(wk·) =
K′ +

∑

iQ′(wki), and:

Q′(wki) =
∑

j,m

γjkmi

(

wki · v+
jkm

−
∑

j,m

γjkm −
exp(wki · v+

jkm)
∑Ik

i′=1
exp(w̄ki′ · v+

jkm)

)

. (127)

We can compute the first and second derivatives of this with respect
to the vectorwki as follows:

∂Q′(wki)

∂wki

T

=
∑

j,m

(γjkmi − γjkmwjkmi)v
+
jkm (128)

∂2Q′(wki)

∂w2
ki

= −
∑

j,m

γjkmwjkmiv
+
jkmv

+
jkm

T
, (129)

usingwjkmi =
exp(wki·v+

jkm
)

exp(
∑

i′ wki′ ·v
+
jkm

)
. A natural approach would be

to take

ŵki = wki −
(

∂2Q′(wki)

∂w2
ki

)−1
∂Q′(wki)

∂wki

T

, (130)

to do this for all i simultaneously and to measure the auxiliary
function of Equation (126); if the auxiliary function increased we
would accept the update and otherwise we would keep halving the
step size until the auxiliary function increased. Unfortunately this
approach does not seem to be stable and it often becomes necessary
to halve the step size many times. The reason is that a two-term
Taylor series approximation is a very poor approximation tothe ex-
ponential function if we are moving too far. We find the convergence
is better with the following approximation which amounts tomak-
ing the quadratic part of the approximation larger (more negative)
in certain cases. We do this by replacing the termγjkmwjkmi in
Equation (129) withmax(γjkmi, γjkmwjkmi). The reason is that
the Maximum Likelihood solution for the weightwjkmi without the
subspace constraint would beγjkmi/γjkm, and we believe that the
update should take us closer to the Maximum Likelihood estimate.
At that pointγjkmwjkmi would take on the valueγjkmi. We take
the larger of the two for safety. This leads to the following auxiliary
function and update.

Q′′(wki) = wki · gki − 1

2
w

T
kiFkiwki (131)

gki =
∑

j,m

(γjkmi − γjkmwjkmi)v
+
jkm (132)

Fki =
∑

j,m

max(γjkmi, γjkmwjkmi)v
+
jkmv

+
jkm

T
(133)

ŵki = wki + F
−1
ki gki. (134)
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BecauseFki can be of reduced rank or have poor condition, we
should use the techniques described in Appendix G to solve this
problem. Note that we are solving for a change∆ki in wki where
the auxiliary function is∆ki · gki − 1

2
∆T

kiFki∆ki adn the initial
value of∆ki is zero.

After doing the update of Equation (134) for alli, we should
check the auxiliary function value of Equation (126), and ifit has
not increased keep halving the step size until the auxiliaryfunction
change is positive. We have never observed the halving of step size
to take place, though. The whole procedure can then be repeated for,
say, three iterations, i.e. do Equation (132) through (134)for all i,
setwki := ŵki for all i and repeat. Note that if we are updating the
vectorsvjkm before the weight projections it is the updated vectors
v̂jkm that should appear in Equations (132) and (133), and likewise
as mentioned in Section 11.1 if we updatewki first we should use
their updated valueŝwki during the update ofvjkmi.

The change in the approximated quadratic auxiliary function of
Equation (131) and the change in the exact auxiliary function of
Equation (126) should be measured as diagnostics on each iteration
of weight update. The two auxiliary functions should both increase
on each iteration and if the approximation is good they should both
increase by a similar amount.

11.8. Update for within-class variances

The auxiliary function for the within-class variancesΣki can be
written as follows:

Q(Σki) = K − 0.5
∑

j,m,t

γ̃jkmi(t)

(

log detΣki (135)

+ (xki(t)−µjkmi)
T
Σ

−1
ki (xki(t)−µjkmi)

)

. (136)

Without doing the derivation as this type of update is very common,
the answer is:

Σ̂ki =

∑

j,m,t γ̃jkmi(t)(xki(t)−µjkmi)(xki(t)−µjkmi)
T

∑

j,m,t γ̃jkmi(t)

=
1

γki

(

Ski −
∑

j,m,t

γ̃jkmi(t)µjkmixki(t)
T

−
∑

j,m,t

γ̃jkmi(t)xki(t)µ
T
jkmi +

∑

j,m

γjkmiµjkmiµ
T
jkmi

)

(137)

Ski =
∑

j,m,t

γ̃jkmi(t)xki(t)xki(t)
T (138)

γki =
∑

t,j,m

γ̃jkmi(t) (139)

=
∑

j,m

γjkmi (140)

In Equation (137), the outer product of the data itself and the cor-
responding counts have been accumulated (we accumulatedSki and
γki; Equation (138) is the same as (63) and Equation (139) is the
same as (61)); now we show how we can compute the cross terms
between the data and the means from statisticsYki which were ac-
cumulated in order to update the projectionsMki. Recalling that

Yki =
∑

t,j,m

γ̃jkmi(t)xki(t)v
+
jkm

T
(141)

which is a repetition of Equation (54), we can right-multiply byMT
ki

to get:
YkiM

T
ki =

∑

t,j,m

γ̃jkmi(t)xki(t)µ
T
jkm, (142)

which is one of the cross terms we need in Equation (137) (we can
transpose to get the other). As for the weighted outer product of the
means, we can compute this as:

S
means
ki =

∑

j,m

γjkmiµjkmiµ
T
jkmi, (143)

usingµjkmi = Mkiv
+
jkm to compute the means. The update equa-

tion is:

Σ̂ki =
1

γki

(

Ski + S
means
ki −YkiM

T
ki −MkiY

T
ki

)

. (144)

In order to handle the problem of very small counts and other reasons
why Σ̂ki may be singular, it is desirable to floor̂Σki to a small
fraction (e.g.1/10) of a global average variance quantity. This will
make it unnecessary to enforce a minimum count. See AppendixI
for a method of flooring full covariance matrices.

The auxiliary function improvement can be calculated as:

∆Q(Σki)=−γki

2

(

log det Σ̂ki−log detΣki+D−tr (Σ−1
ki Σ̂ki)

)

.

(145)
This is not valid in the presence of flooring but should be good
enough for diagnostics.

11.9. Updating the “background” model

Here we describe the equations used to update the “background”
GMM during training of the entire HMM set. This refers to any
training of the “background” GMM parameters that is done while
training the main model, not the “pre-training” which was done
through standard E-M and alluded to in Section 7.2. There is actu-
ally no theoretical justification for training the “background” model
during model training, since formally the background modelpa-
rameters are not part of the model at all; they are only used for
pruning. In fact, proofs of convergence the update formulaefor the
main model in the presence of pruning would only work if we left
the background model constant. Despite this, there is a practical
and intuitive reason why we might want to train the background
model, which is to keep it in correspondence with the Gaussian
posteriors of the main model, so the pruning can be more accurate.
Experiments have failed to show any difference between updating
and not updating the background model. We show the equations
here anyway.

11.10. Updating the full-covariance background model

The full covariance background model can be updated (if desired) as
follows:

ˆ̄wki =
γki

∑

k,i γki
(146)

ˆ̄µki =
1

γki
mki (147)

ˆ̄Σki =
1

γki
Ski − ˆ̄µki ˆ̄µ

T
ki, (148)

with γki, mki andSki as accumulated in Equations (61) to (63).
We can skip the update for a particular Gaussian if the count is very
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small, e.g. less thanD. Note that in practice we may just set all
the weights to be all the same rather than using Equation (146). The
variance should be floored to e.g. one tenth of a globally averaged
variance, using the method described in Appendix I. The auxiliary
function improvement from the mean and variance update is:

∆Q(µ̄ki, Σ̄ki) = −γki
2

(

log det ˆ̄Σki − log det Σ̄ki +D

−( ˆ̄µki − µ̄ki)
T
Σ̄

−1
ki ( ˆ̄µki − µ̄ki)

−tr (Σ̄−1
ki

ˆ̄Σki)
)

. (149)

This is the improvement in the auxiliary function we use to update
the full-covariance background model, which is not actually an aux-
iliary function for our overall data likelihood; it is simply useful to
tell how much the background model is changing.

11.11. Updating the diagonal background model

Assuming the diagonal version of the background model is evalu-
ated with features that have the same level of adaptation as the full
version, we can just set its parameters to be the diagonalized version
of the full background model’s updated parameters:

ˆ̄µdiag
ki = ˆ̄µki (150)

ˆ̄Σdiag
ki = diag ( ˆ̄Σki), (151)

(152)

wherediag (M) isM with all its off-diagonal elements set to zero.

12. ESTIMATING CONSTRAINED MLLR FOR THE FULL
COVARIANCE CASE

Here we describe a method of estimating constrained MLLR trans-
forms on a set of full-covariance Gaussians. We describe a method
that is designed to be easily combinable with subspace techniques in
which we constrain the transform to vary in a subspace of the full
parameter space. The gist of the technique is that we computean ap-
proximation to the Hessian of the likelihood function with respect to
the transform matrix parameters, for data generated from the model
itself. This tells us what the second gradient will be, approximately,
for “typical” statistics. We can use this information to pre-scale the
parameter space so that the expected second gradient is proportional
to the unit matrix. Then when presented with actual data, we com-
pute the sufficient statistics to update the transform, and the update
then consists of repeatedly choosing the optimal step size in the di-
rection of the gradient, within the pre-scaled parameter space. The
pre-scaling ensures that this type of update will converge reasonably
fast. The actual Hessian given the statistics we accumulated may dif-
fer somewhat from the one we pre-computed, but all we need is for
the estimate to be in the right ballpark– a factor of two error, for in-
stance, will not slow down the update too much. Because the core of
this technique is a simple gradient descent method, it is easy to limit
to a subspace of the matrix parameters; this is not the case for tra-
ditional row-by-row updates, which although they can be combined
with subspace techniques [8] and full covariance models [9,10], are
hard to use efficiently with a combination of the two.

12.1. Constrained MLLR

The transformation we use in constrained MLLR is:

x→W
(s)

x
+, (153)

wherex+ is x with a 1 appended to it, and the speaker transfor-
mation matrixW(s) is aD by D + 1 matrix which can be written
as:

W
(s) =

[

A
(s);b(s)

]

, (154)

whereA(s) is a square matrix andb(s) is the offset term.
The objective function is the likelihood of the transformeddata

given the GMM, plus the log determinant ofA(s). The need for the
log determinant term is clearer if we view this form of adaptation
as a transformation of the model rather than the features [11], but
the process is probably easier to visualize if we view it as a feature
transformation.

12.2. Pre-transform

In order to make the second gradient computation easier, we first
(conceptually) pre-transform the features and the model such that the
average within-class variance is unit, the average mean is zero and
the covariance of the mean vectors is diagonal. We will not have to
apply this transformation to the model or the features, but the trans-
forms we compute here will appear in the optimization formulae for
the transforms we are estimating.

The input to this stage assumes we have Gaussian indices1 ≤
j ≤ J , with meansµj and (possibly full) variancesΣj , and oc-
cupation probabilitieswj such that

∑J

j=1 wj = 1. By using this
notation we do not assume that we have a flat mixture of Gaussians,
it could be a HMM but in that case we have to work out the expected
occupation probabilitieswj of the individual Gaussians within the
whole HMM. It is not absolutely critical that these be exact;making
approximations such as assuming that all states are equallylikely
would probably not affect the optimization speed too much.

We first compute:

ΣW =
J
∑

j=1

wjΣj (155)

µ =
J
∑

j=1

wjµj (156)

ΣB =

(

J
∑

j=1

wjµjµ
T
j

)

− µµ
T . (157)

We are computing a pre-transformWpre = [Apre;bpre], which will
give our model the desired properties. The square part of thematrix
Apre should be such thatApreΣWAT

pre = I andApreΣBAT
pre is

diagonal, and we needApreµ + b = 0. We first do the Cholesky
decomposition

ΣW = LL
T , (158)

computeB = L−1ΣBL
−T , do the singular value decomposition

B = UDV
T (159)

(this impliesB = UDUT becauseB is positive semi-definite, see
Appendix B), and the transform we want is

Apre = U
T
L

−1 (160)

µpre = −Apreµ (161)

Wpre = [Apre;bpre] . (162)

We also need to compute the inverse transformation toWpre, which
we callWinv (this is not the same asW−1

pre as it is not square).

Winv = W
+
pre

−1−
(163)

=
[

A
−1
pre;µ

]

. (164)
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The notation·+ in this context means appending a row whose last
element is 1 and the rest are zero;·− means removing the last row.

12.3. Hessian computation

Now we compute the Hessian (matrix of second derivatives) ofthe
expected per-frame model likelihood with respect to transform pa-
rametersW around the point whereW = [I; 0], for typical data
generated from the model. At this point we assume the model has
been transformed as above so the average within-class variance is
unit, the scatter of the means equalsD, and the average mean is0.
In addition we are making the approximation that all the variances
are equal to the average varianceI. Thus, we are in fact comput-
ing an approximated, expected Hessian. This approximationis not a
problem since we are only using the computed Hessian for precondi-
tioning the problem; it will not lead to any inaccuracy in theanswer
but only a slower rate of convergence.

The auxiliary function is:

Q(W) = log | detA|

−0.5
J
∑

j=1

wjEj
(

(Ax+ b− µj)
T (Ax+ b− µj)

)

, (165)

where the expectationEj is over typical featuresx generated from
Gaussianj. The auxiliary function has a simple form because the
variancesΣj are assumed to be unit. Then we use the fact that the
featuresx for Gaussianj are distributed with unit variance and mean
µj , to get (keeping only terms quadratic inA and/orb):

Q(W) = K + log |detA|

−0.5
J
∑

j=1

wj

(

tr (A(I+ µjµ
T
j )A

T )

+b
T
b+ 2(Aµj) · b

)

. (166)

Now we can use the fact that the meansµj have zero mean and
varianceD, to get:

Q(W) = K + log |detA|
−0.5

(

tr (A(I+D)AT ) + b
T
b
)

. (167)

We can work out the quadratic terms in the expansion oflog |detA|.
If we use the fact that∂ log detA

∂A
= A−1 (using the convention

where( ∂f

∂A
)ij = ∂f

∂aji
), we have∂ log | detA|

∂aij
= (A−1)ji. To find

the second derivative we can use the fact that if the matrixA de-
pends on a parametert, dA

−1

dt
= −A−1 dA

dt
A−1. Considering

the special dependency whereaij = t and the rest are fixed,dA

dt

would just equalSij which we define as matrix with a 1 in posi-
tion i, j and zeros everywhere else. Evaluated as a constant around
A = I, we have∂A−1

∂aij
= −A−1SijA

−1 = −Sij . This implies

that
∂(A−1)ij

∂akl
= −δ(i, k)δ(j, l). Thus we have:

∂ log |detA|
∂aijakl

=
∂(A−1)ji

∂akl

(168)

= −δ(j, k)δ(i, l) (169)

This means that the quadratic term in the Taylor expansion of
log detA can be expressed as−0.5∑ij aijaji. Using this and
doing a similar element-by-element expansion of the other terms

in (167), usingQ(2)(W) to meanQ(W) with just the quadratic
terms kept we can write:

Q(2)(W) = −0.5
∑

i,j

aijaji + a2
ij(1 + dj)

−0.5
∑

i

b2i , (170)

where we usedj for thej’th diagonal element ofD. Thus, the Hes-
sian of the objective function in the elements ofW has a particularly
simple covariance structure where there is a correlation only between
an element and its transpose. The diagonal ofA and the elements of
b are not correlated with anything. It would be possible to rearrange
the elements ofA andb into a big vector such that the Hessian had
a block diagonal structure with blocks of size 2, but it will be easier
to avoid that because the mapping would be somewhat complicated.
Instead we write down the transformations that make the quadratic
term equal to−0.5 I, as linear operations on the elements ofA.

Let us consider a vectorv =

[

aij

aji

]

, where i 6= j, and

let us arbitrarily stipulate thatj < i to fix the ordering. Writing
down a matrixM such that the relevant terms in (170) would equal
−0.5vTMv, we have:

M =

[

1 + dj 1
1 1 + di

]

. (171)

Working out the Cholesky decomposition ofM, we have:

M = LL
T (172)

L =

[

(1 + dj)
0.5 0

(1 + dj)
−0.5

(

1 + di − (1 + dj)
−1
)0.5

]

(173)

The inverse ofL is, using

[

a 0
b c

]−1

=

[

1/a 0
−b/(ac) 1/c

]

:

L
−1=

[

(1 + dj)
−0.5 0

− (1+di−(1+dj)
−1)−0.5

(1+dj)

(

1 + di − (1 + dj)
−1
)−0.5

]

. (174)

Now since the quadratic term in the objective function equals
−0.5vTLLTv, it is clear that a transformation onv that makes
the Hessian equal to−I, is LT (since the quadratic term can be
expressed as−0.5(LTv)T I(LTv)). Now let us suppose we have
a transformationW = [A; b]. To transform its parameters into
the space where the Hessian equals−I, we need to transform the
parameters withLT , i.e. the transpose of (173): for1 ≤ i ≤ D and
1 ≤ j < i:

w̃ij = (1 + dj)
0.5wij + (1 + dj)

−0.5wji (175)

w̃ji =
(

1 + di − (1 + dj)
−1)0.5 wji, (176)

and for the diagonal ofA we can scale by the square root of the
appropriate term in (170): for1 ≤ i ≤ D,

w̃ii = (2 + di)
0.5wii. (177)

The elements ofb, i.e. w(D+1)i, are just copied. In order to trans-
form the matrix back from this space to the original space, the re-
verse transformation isL−T , which is the transpose of (174): for
1 ≤ i ≤ D and1 ≤ j < i:

wij = (1 + dj)
−0.5w̃ij

−
(

1 + di − (1 + dj)
−1
)−0.5

(1 + dj)
−1w̃ji (178)

wji =
(

1 + di − (1 + dj)
−1
)−0.5

w̃ji (179)
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and for the diagonal,

wii = (2 + di)
−0.5w̃ii. (180)

Suppose we have a gradientP with respect to the matrix parame-
ters, whereP has the same dimensions asW so that the objective
function contains a termtr (WPT ). TransformingP to be in the
transformed spaceP → P̃ involves the inverse transpose of the
“forward” transformation; this is clear as a general rule because if
we have a vectorx and a gradientg and we transformx with M and
g with M−T , we have(Mx) · (M−Tg) = xTMTM−Tg = x · g.
Therefore forP→ P̃ the transformL−1 applies: referring to (174),
for 1 ≤ i ≤ D and1 ≤ j < i,

p̃ij = (1 + dj)
−0.5pij (181)

p̃ji = −
(

1 + di − (1 + dj)
−1)−0.5

(1 + dj)
−1pij

+
(

1 + di − (1 + dj)
−1)−0.5

pji (182)

and for the diagonal, for1 ≤ i ≤ D,

p̃ii = (2 + di)
−0.5pii. (183)

For the reverse transformatioñP → P, the transformL applies:
referring to Equation (173), for1 ≤ i ≤ D and1 ≤ j < i,

pij = (1 + dj)
0.5p̃ij (184)

pji = (1 + dj)
−0.5p̃ij

+
(

1 + di − (1 + dj)
−1)0.5 p̃ji (185)

and for the diagonal, for1 ≤ i ≤ D,

pii = (2 + di)
0.5p̃ii. (186)

In Section 12.5 we will show how these transformations are used in
the update rule.

12.4. Statistics accumulation

Here we describe the statistics accumulation for constrained MLLR
estimation using this method.

We assume that we have done some kind of E-M to to get pos-
teriorsγj(t) for each Gaussianj on each timet. We write the al-
gorithm assuming we have a “flat” mixture of Gaussians, but this
applies equally to a HMM; in that case the indexj would range over
the individual Gaussians in all the states of the HMM. If we are do-
ing multiple passes over the data to estimate a transform andwe are
not on the first pass, the posteriorsγj(t) will be computed using the
existing transform, but we accumulate statistics given theoriginal
features. We compute the following statistics:

β =
∑

t,j

γj(t) (187)

K =
∑

t,j

γj(t)Σ
−1
j µjx

+(t)T (188)

Sj =
∑

t,j

γj(t)x
+(t)x+(t)

T
. (189)

and the auxiliary function is:

Q(W) =
∑

t,j

γj(t) (log |detA| (190)

−0.5(Wx
+(t)− µj)

T
Σ

−1
j (Wx

+(t)− µj)
)

(191)

= K + β log |detA|+ tr (WK
T )

−0.5
∑

j

tr
(

W
T
Σ

−1
j WSj

)

(192)

12.5. Update

The update is an iterative update where on each iteration we compute
the gradient of the objective function w.r.t.W, use the pre-scaling
described in the previous section to compute an update direction, and
compute the optimal step size in that direction. On each iteration of
update we refer to the current (pre-update) value ofW asW̄. If we
were using iteration indices we would write something likeW(p−1)

instead ofW̄. At the very start of the process̄W equals[I; 0]; if we
are not on the first iteration of the update or we are starting from an
already estimated transform, this will not be the case. We derive the
equations for a single iteration of update as follows. A linearization
of (192) aroundW = W̄ is:

Q(W) ≃ K′ + βtr (AĀ
−1) + tr (WT

K)

−
∑

j

tr
(

W
T
(

Σ
−1
j W̄Sj

)

)

(193)

≃ K′ + tr
(

W
T
P
)

(194)

P = β
[

A
−T ; 0

]

+K− S, (195)

S =
∑

j

Σ
−1
j W̄Sj (196)

whereM+0 is M extended with an extra row of zeros. SoP is the
local gradient. In order to transform withWpre into the correctly
normalized space, we can defineW′ asW in the pre-transformed
space, so that we could take an original featurex, and transform
with Wpre, W′ and thenWinv (which is the inverse transformation
toWpre). It is convenient to turn all the transformsW into the form
W+ which has an extra row whose last element is1 and the rest are
zero; this leaves a1 on the end of the transformed vectors and makes
W+ a square matrix. So we have:

∀x, W
+
x
+ = W

+
invW

′+
W

+
prex

+ (197)

W
+ = W

+
invW

′+
W

+
pre (198)

W
′+ = W

+
inv

−1
W

+
W

+
pre

−1
(199)

W
′ = WpreW

+
W

+
inv (200)

We can use this to transformP to P′ to apply in the transformed
space. Again it is useful to represent everything as square matrices:

∀W, tr (WT
P) = tr (W′T

P
′) (201)

∀W, tr (WT
P) = tr (W+

inv

T
W

+T
W

T
preP

′) (202)

∀W, tr (W+T
P

+0) = tr (W+T
W

T
preP

′
W

+
inv

T
) (203)

P
+0 = W

T
preP

′
W

+
inv

T
(204)

At this point we use the fact thatW+
inv

T−
WT

pre = I. This is true
becauseA−B−C = (AB)−−, with ·−, ·−C and·−− meaning re-
moving respectively the last row, the last column, and both;and we

17



use this together with the fact thatW+
inv

T
W+

pre
T
= I. We can then

arrive at:

P
′ = W

+
inv

T −
P

+0
W

+
pre

T
. (205)

=
[

A
−T
pre ; 0

]

P
+0

W
+
pre

T
(206)

= A
T
invPW

+
pre

T
, , (207)

whereAinv = A−1
pre is the firstd columns ofWinv. Note that (207)

is similar to the inversed and transposed equivalent of (200), which is
what we expect for a quantity and its derivative. After computingP′

using (207), which means we have applied the pre-transform to the
gradient, we apply the transformation of Equations (181) to(183),
which gives us a quantity we can callP̃. In this space the proposed
change∆ in W will be:

∆̃ =
1

β
P̃. (208)

We then transform∆̃ to ∆′ using Equations (178) to (180); note
that∆ takes the place ofW in those equations. Then we transform
∆′ to∆; referring to Equation (198):

∆ = Winv∆
′+0

W
+
pre. (209)

At this point a useful check to do is to make sure that:

tr (∆P
T ) = tr (∆′

P
′T ) (210)

= tr (∆̃P̃
T ). (211)

This is a check that the co-ordinate transformations have been con-
sistently done. At this point we have a suggested change∆ in W in
the original co-ordinates, which in most cases we should be able to
apply without problems. But we are still not guaranteed to increase
the objective function. At this point we decide to make a stepk∆,
wherek will be close to 1 if our approximations are accurate, and
we will choosek to maximize the auxiliary function.

Referring to the auxiliary function in Equation (192), and using
W = W̄+ k∆, we can express the auxiliary function as a function
of k (ignoring constant terms) as:

Q(k) = β log |detA|+ k tr (∆K
T ) (212)

−k tr (∆S
T )− 0.5k2

∑

j

tr
(

∆
T
Σ

−1
j ∆Sj

)

, (213)

with S as defined in Equation (196). We will iteratively optimize the
scalark using Newton’s method, starting atk = 0. First we simplify
the auxiliary function ink as below, using∆−C to mean∆ with its
last column removed:

Q(k) = β log det(A+ k∆−C)

+km− 0.5k2n, (214)

m = tr (∆K
T )− tr (∆S

T ) (215)

n =
∑

j

tr
(

∆
T
Σ

−1
j ∆Sj

)

. (216)

On each iteration of optimizing, we need the first and second deriva-
tives of the auxiliary function with respect tok. We can compute:

dQ(k)
dk

= βtr ((A+ k∆−C)−1
∆

−C)

+m− kn (217)

d2Q(k)
dk2

= −βtr ((A+ k∆−C)−1
∆

−C(A+ k∆−C)−1
∆

−C)

−n, (218)

with derivations of the parts of Equations (217) and (218) that in-
volve matrices put in Appendix E. The update is:

k̂ = k +
δQ(k)/δk
−δ2Q(k)/δk2

. (219)

On each of these iterations we should compute the value of Equa-
tion (214) to check that it is not decreasing, and in that casekeep
halving the change ink until it is not decreasing. This situation
should rarely happen. Updatingk for five or ten iterations should be
sufficient; the time taken to do this does not dominate the computa-
tion.

The final value ofk should be reasonably close to 1. It may be
helpful to print out the optimal values ofk on each iteration as a
sanity check on the algorithm. Each step (i.e. each time we calcu-
late a∆ and estimate the optimalk), the value of Equation (214)
given the optimalk is the objective function change. We can see
this becausek = 0 corresponds to no change inW, and in that case
Equation (214) is zero. After we estimatek, the update is:

W←W+ k∆. (220)

The overall process has three levels of iteration. The outerlevel
is where we accumulate statistics using Equations (187) to (189),
where typically one or two iterations should suffice. The interme-
diate level is where each time we compute a change∆, iteratively
optimizek and update the matrixW, using roughly Equations (195)
to (220); we expect to do perhaps 5 to 10 of these iterations. The
inner level is the number of iterations needed to estimatek, where
also perhaps 5 to 10 iterations can be used but this choice is not very
critical.

13. SUBSPACE VERSION OF CONSTRAINED MLLR

Let us suppose we have a set of “basis” constrained MLLR matrices
Wb for 1 ≤ b ≤ B, and we force our estimated matrixW to have
the form:

W
(s) = W0 +

B
∑

b=1

d
(s)
b Wb, (221)

whereW0 = [I; 0], and we include this to ensure the “default”
transform is in our subspace. We are borrowing some notation
from [8]. It is actually more convenient to express this relationship
in the fully transformed space:

W̃
(s) = W̃0 +

B
∑

b=1

d
(s)
b W̃b. (222)

The transformW̃0 does not have the simple form ofW0 because
when we change co-ordinates we scale the diagonal ofA, but we
never have to refer tõW0 in our calculation so we don’t write down
the expression for it. It is useful to represent the set ofW̃b as an
orthonormal basis, so that:

tr (W̃bW̃
T
b ) = 1 (223)

tr (W̃bW̃
T
c ) = 0, c 6= b. (224)

Note thattr (ABT ) is the the same as the dot product of the con-
catenated rows (or columns) of the matricesA andB, and Equa-
tions (223) and (224) make the most sense while thinking about the
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matrices as vectors. In the baseline approach, the update inthe trans-
formed space was very simple:

∆̃ =
1

β
P̃, (225)

to repeat Equation (208). With the subspace approach, we would do
instead:

∆̃ =
1

β

B
∑

b=1

W̃btr (W̃bP̃
T ). (226)

Note that in this method of calculation the quantitiesd
(s)
b are “im-

plicit” and are never referred to in the calculation, but theupdated
W will still be constrained by the subspace. This makes it possible
to do more code sharing with the non-subspace-constrained version
of the Constrained MLLR computation and simplifies a lot of proce-
dures, but at the cost of memory and possibly disk space. The use of
the subspace will not slow down the update significantly ifB is not
much larger thanD and if we computetr (W̃bP̃

T ) in a reasonable
way (without actually computing the matrix product).

13.1. Training the basis

Training the basis is quite straightforward. Assuming our Hes-
sian is correct and the update is reasonably small, we can compute
our auxiliary function improvement in the transformed space as
0.5tr (∆̃P̃T ). This is is the same as0.5tr ( 1√

β
P̃ 1√

β
P̃T ), which

is half the sum of squared elements of1√
β
P̃. If we are using a

subspace, our auxiliary function improvement is the trace of the
scatter of this quantity projected into the subspace. So thebasis
computation consists of computing 1√

β(s)
P̃(s) for all speakerss,

turning each matrix into a vector by concatenating the rows and then
computing the top eigenvectors of the scatter of this quantity. Note
that in order to do this, it is not necessary to actually compute the
scatter. It can be more efficient to do the eigenvalue computation on
the vectors themselves, as described Appendix A. The associated
eigenvalues are useful for diagnostics; we expect the eigenvalues
to drop off quite rapidly. The quantity1√

β
P̃(s) is computed once

for all speakers without actually doing any adaptation: we compute
it for each training speakers as if we are about to start optimizing
W(s) for that speaker.

13.2. Interaction with class-based constrained MLLR

In class-based constrained MLLR, we apply a different transform
for different sets (“classes”) of the Gaussians in a system.In this
case it would most likely be beneficial to compute all the generic
parameters, such asWinv, D and the basis matrices̃Wb, separately
for each class. It is common to do regression tree based MLLR,in
which the classes are arranged into a binary tree (the original classes
are at the leaves), and the transform is estimated at nodes ofthe tree,
not necessarily leaf nodes, where there is enough data. Thiscor-
responds to hierarchically merging similar classes. Thesegeneric
parameters should probably be estimated at all nodes of the tree in
that case. In the recipe we have in mind for the subspace-based sys-
tem, there will probably be about 10 regression classes (based on
the “sub-models”1 ≤ k ≤ K). We will most likely just enable
computation for these regression classes, and one “global”class cor-
responding to the merge of all of them. Because there are veryfew
parameters to estimate per speaker, there is not much point in going
to the trouble of coding a regression tree since in most caseswe will
have enough data to estimate transforms at its leaves.

14. SPEAKER TRANSFORMS (CONSTRAINED MLLR)

In this section we summarize the various forms of update associated
with constrained MLLR estimation. This section simply summa-
rizes how to use the techniques described in Sections 12 and 13 in
the context of a factor analyzed GMM. The reader who is simply
trying to understand the fundamental ideas may find it best toskip
this section.

14.1. Phases of transform computation

There are three different phases involved in the computation for the
subspace-based speaker transforms. The first phase is the compu-
tation of the pre-transforms and associated parameters, both global
and sub-model-specific versions. These are quantities thatappear in
our update equations for Constrained MLLR estimation. Thisphase
should probably take place after we have already begun training the
subspace based model, but before we have begun training it speaker
adaptively (using the speaker vectorsv

(s)
k and projectionsNki). The

reason is that to estimate these parameters we need a model that cor-
responds as much as possible to the model we are going to use in
testing, but the incorporation of the other form of speaker adapta-
tion in this phase would be very complicated, and would probably
not help. The second phase is the estimation of the subspace–i.e.
the basis matrices̃Wb, both globally for the sub-models. This re-
quires us to accumulate statistics for each speaker as if we are going
to estimate transforms, but instead just compute a gradientterm that
we store for each speaker; the subspace is computed by findingthe
top eigenvectors of the scatter of these quantities. We willcompute
a subspace separately for each sub-modelk and also a global one
for back-off when there is very little data. The third phase is where
we already have the pre-transforms and subspaces, and are ready to
compute speaker transforms. At this point we start estimating trans-
forms for training speakers, and the other parts of accumulation take
place on top of the transformed features.

Note that these three different phases would be interleavedwith
other phases of model training; they would each be done on particu-
lar iterations of the model training. For example, supposing we have
20 iterations of model training overall, we might decide that phase
1 (pre-transforms) takes place on iteration 5, phase two (basis esti-
mation) takes place on iteration 6, and transform estimation (phase
three) takes place on iteration 7 and every 5’th iteration thereafter.
Typically other forms of estimation would take place on those itera-
tions also.

The order of estimating the constrained MLLR transforms and
the factor-based adaptation (v

(s)
k and Nki) needs to be decided.

They should probably be estimated in the same order in training and
testing. There is also the question of whether to reset the adaptation
parameters prior to re-estimating them each time. These decisions
do not affect the equations, since we write each form of update
assuming the other is already in place, and if not the other will just
take some default value that implies no adaptation is takingplace.

14.2. Pre-transform computation

The pre-transform computation is something that can be donestati-
cally from the models only, without reference to the data. Wewill
generally choose a particular iteration of update, typically near the
beginning, on which to do this. The output of this phase is as follows.
First we have a global pre-transform pairWpre andWinv with its
associated diagonal projected mean-scatterD (we just store the di-
agonal elements of this). Then we have the same for each sub-model
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k; we can call theseW(k)
pre, W

(k)
inv, andD(k).

For this phase we need to have a prior for each acoustic statej,
and we can either just assume a flat priorγj = 1/J or estimate it
from counts. Then we can compute:

γk =
∑

j,m

γjcjkm (227)

Σ
(k)
W =

1

γk

∑

j,m,i

γjcjkmwjkmiΣki (228)

µ
(k) =

1

γk

∑

j,m,i

γjcjkmwjkmiµjkmi (229)

Σ
(k)
B =

1

γk

(

∑

j,m,i

γjcjkmwjkmiµjkmiµ
T
jkmi

)

−µ(k)
µ

(k) T
. (230)

It may be helpful to prune away very small counts (i.e. ifγjcjkmwjkmi

is very small) to avoid computing the meanµjkmi or its outer prod-
uct, both of which require some computation. The pre-transform
computation starting from these statistics is described inSec-
tion 12.2.

To compute the global version of the required quantities, wecan
average the sub-model-dependent statistics with:

ΣW =
∑

k

γkΣ
(k)
W (231)

µ =
∑

k

γkµ
(k) (232)

ΣB =
∑

k

γk
(

Σ
(k)
B + µ

(k)
µ

(k)T
)

−µµT . (233)

Again, the pre-transform computation is as described in Sec-
tion 12.2.

14.3. Basis computation

Next we need to compute the basis matrices; these include theglobal
basis matrices̃Wb for 1 ≤ b ≤ B, and the sub-model basis matrices
W̃

(k)
b . In order to do this, for each speakers we need to compute

statisticsβ(s)
k , K(s)

k andS(s)
ki . This is as described in Equations (64)

to (66). We can just sum these statistics up to getβ(s) andK
(s)
k

which apply to the global (not sub-model-specific) version of the
computation. The global version of the computation uses thestatis-
ticsS(s)

ki for all values ofk.
Using these statistics for speakers we need to compute the

global matrix of gradients̃P(s) for each speakers and the sub-
model-specific ones̃P(s)

k . Using the global version to illustrate
the process, we computeP(s) with Equations (195) and (196),
pre-transform it toP′ (s) using Equation (207), and tõP(s) with
Equations (181) to (183). We then scale by1√

β
and store the result.

The outcome of the above process is that we have a set of
matrices for each speaker1 ≤ s ≤ S, namely the global version

1√
β(s)

P̃(s), and also the sub-model specific versions1√
β(s)

P̃
(s)
k .

The rest of the basis computation is simple: we turn each ma-
trix into a vector, compute the scatter of these vectors, andthen
globally and for eachk we compute the top eigenvectors and

turn the result back into sets of basis matrices. To make thisex-
plicit, supposingvec(A) means concatenating together the rows
of A, for a particulark we would compute the scatter matrix
M =

∑

s∈S vec( 1√
β(s)

P̃(s))vec( 1√
β(s)

P̃(s))T , do an eigenvalue

decompositionM = VDVT , and assuming the columns ofV are
sorted from highest eigenvalue to lowest we could take the first B
columnsvb, 1 ≤ b ≤ B of V as our basis, turning eachvb into a
matrix W̃b by making each block ofD + 1 elements a row of the
matrix. The associated eigenvalues (the diagonal ofD) should also
be useful for diagnostic purposes as they tell us how much of the
speaker variation is present in each dimension.

14.4. Speaker transform computation

The computation of the speaker transforms needs the statisticsβ(s)
k ,

K
(s)
k andS(s)

ki which are accumulated as described in Equations (64)
to (66). The update is as described in Section 12.5 with the subspace
modification described in Section 13. If any sub-modelk has less
than some specified minimum count (e.g. twice the subspace dimen-
sion), we can back off to a global version of the transform which
may be estimated by summing up the statisticsβ

(s)
k andK(s)

k to get
a globally summed version of the statistics, and doing the same com-
putation.
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APPENDICES

A. FAST TOP-N-EIGENVALUE COMPUTATION

Many situations arise where we need to compute the topN eigen-
values and eigenvectors of a symmetric matrixM =

∑K

k=1 vkv
T
k ,

with vk ∈ ℜD . We will assume thatN ≪ D andN ≪ K (i.e.
the number of eigenvalues we need is quite small compared with the
other quantities), but the number of vectorsK may be greater or less
thanD.

This problem can be solved via SVD. The most obvious method
would be to computeM and do the singular value decomposition
M = UDVT , sort the columns ofU and the corresponding diag-
onal elements ofD from largest to smallest (SVD implementations
generally do not do this sorting exactly so the user must do it), and
return the firstN columns ofU as the top eigenvectors and the first
N diagonal elements ofD as the corresponding eigenvalues.

If K < D, we can solve this more efficiently: letA be theD
by K (tall) matrix whosek’th column isvk, so thatM = AAT .
We can work out the SVD ofM via SVD on a smallerK by
K matrix, as follows. First, computeATA and do the singu-
lar value decompositionATA = UDVT . BecauseATA is
bound to be positive semi-definite we can show thatATA =
UDUT (i.e. we can discardV). At this point we can write down
M = AAT = (AUD−0.5)D(D−0.5UTAT ) = WDWT ,
where the columns ofW = AUD−0.5 are orthonormal because
WTW = D−0.5UTATAUD−0.5 = I. This is the same as
singular value decompositionM with W containing only the first
K columns, and and we could easily construct the full SVD from by
extendingW [12, Theorem 2.5.1]. So as before we sort the diagonal
elements ofD and the corresponding columns ofW from largest
to smallest eigenvalue, and return the topN . This argument does
not cover the case when elements ofD are zero, but extending it to
cover that case is not difficult.

A simpler but less efficient way of doing it in the case where
K < D, is to do the singular value decompositionA = ULVT

(assume this is the “skinny” SVD soU ∈ ℜD×K , L ∈ ℜK×K and
V ∈ ℜK×K ), soM = UL2UT . The diagonal elements ofL will
always be positive (this is how SVD is defined), so we only haveto
sort the diagonal elements ofL and the corresponding rows ofU as
before and the answer is the firstN columns ofU and thesquares
of the firstN diagonal elements ofL.

The methods described above should be reasonably fast, e.g.
SVD onM whereD = 40 · 41 = 1640 as we would encounter
in the CMLLR computation with 40 dimensional data should take
about12D3 = 53×109 floating point operations [12, Section 5.4.4],

which at one Gigaflop would take about one minute. So it is quite
possible to do this in the standard way. However, it is possible to do
it much faster as described below.

A.1. Fast top N eigenvalue computation

This section describes an algorithm for quickly computing the N
eigenvalues with the largest absolute value and their corresponding
eigenvectors, for a symmetricD×D matrixM, with D ≫ N . The
technique used here is a form of the Lanczos method [12, 13]. It
is also related to the technique described in [14] (and is solving the
same problem), but it is faster.

Let us formulate the problem as saying we need an orthonormal
set of vectorsan, 1 ≤ n ≤ N , such that if the columns ofA arean

andB = ATMA, B is diagonal and the sum of absolute values of
the diagonal elements ofB is maximized. This is basically the same
problem we have when doing PCA and related methods. An exact
solution to this could be obtained by makingai theN eigenvectors
with the largest magnitude eigenvalues. Typically in the kinds of
problems that this arises in, we will only be dealing with positive
eigenvalues, but in order for this approach to work we have toas-
sume we need the largestabsolute eigenvalues; this is of no practical
consequence in most cases.

In this algorithm, we construct a sequence of vectorsvi (1 ≤
i ≤ I) which form an orthonormal basis (vi · vj = δij ), and a se-
quenceui (1 ≤ i ≤ I) such thatui = Mvi. If we haveU andV
such that the rows ofU areui and the rows ofV arevi, we have
UT = MVT . If we then compute theI × I matrixW = VUT ,
thenW = VMVT . W is justM restricted to a subspace defined
by the vectorsvi. Within this restricted subspace, we can solve our
problem as defined above by taking the topD eigenvectors ofW and
representing them appropriately in the original space. Theproblem
then is to get a restricted subspace that contains as much as possible
of the variance withinM. The basic idea is to start with a random
vectorr and keep multiplying byM and orthogonalizing. At the end
the rows ofV will be some linear combination ofr,Mr . . .MI−1r.
This process will tend to lead to a subspace dominated by the eigen-
vectors ofM with the largest eigenvalues. The theory behind this is
quite complicated; see the chapter on Lanczos methods in [12] for a
discussion and references.

The way it is done in the algorithm we write below, we never
have to storeU because we constructW as we go along andW
contains all the information needed to constructU from V. W has
a tri-diagonal structure and this could in principle be usedto reduce
the number of vector-vector multiplies we do: we dotui with all
vj , 1 ≤ j ≤ i, but it is not necessary forj < i − 1. However,
avoiding those dot products leads to numerical instabilityand they
do not dominate the computation anyway. We also waste space and
time by making no use of the tri-diagonal nature ofW in its storage
or in the singular value or eigenvalue decomposition ofW (see [12]
for methods to do this), but these things do not dominate the overall
memory or time of the computation.

The algorithm is as follows. Let the number of iterationsI equal
min(N +X,D), with for instanceX = 40; X is the number of ex-
tra iterations. We only get a saving by using this approach ifI ≪ D.
We setv1 to be a random unit vector, andW to be anI by I ma-
trix whose elements are initially all zero.W represents a sequence
of vectorsui in the orthonormal basis represented byvi; eachui

equalsMvi. On each iteration we setui to Mvi and setvi+1 to
be the direction inui that is orthogonal to all previousvi. The algo-
rithm is:
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Setv1 to be a random, unit-length vector.
For each iteration1 ≤ i ≤ I :

vi+1 ←Mvi

for 1 ≤ j ≤ i,
Wij ← vi+1 · vj

vi+1 = vi+1 − vjWij

if j < i− 1,
Check thatWij is small; set it to exactly zero
(in this case we only did it for numerical stability)

if i < I ,
Wi,i+1 ← |vi+1|

vi+1 ← 1
|vi+1|vi+1

(where|x| =
√
∑

i xi )
Make sure the tri-diagonal matrixW is exactly symmetrical

(symmetrize in case of small errors)
Use a standard method to do the eigenvalue decomposition ofW

asW = PDPT

SortP andD in terms of theabsolute eigenvalue, by
rearranging the columns ofP and the diagonal elements ofD.

LetPT
N,I equalPT truncated to dimensionN × I .

LetV be aI byD matrix whose rows arevi, 1 ≤ i ≤ I .
The topN eigenvectors we return are the rows ofPT

N,IV

The topN eigenvalues are the firstN diagonal elements ofD.

Given the way we have formulated the problem above, a sensi-
ble testing approach is as follows. If the routine returns a vectorA
whose rows are the (approximate) eigenvectors, we can test it as fol-
lows.A should be orthonormal (ATA = I), and we should evaluate
B = AMAT . B should be diagonal, and the sum of the absolute
values of its diagonal elements should be very close to the sum of
theN largest eigenvalues ofM (it cannot be more than that).

We can check that we have set the number of iterationsI large
enough by evaluating the sum of absolute diagonal elements of B
(or equivalently, the largestD elements ofD inside the algorithm)
and testing whether it seems to be converging as we increaseI . The
number of required iterations will depend on how closely spaced the
matrix’s eigenvalues are.

An extension of this that can be used when the large matrixM

consists of a sum of outer productsM =
∑K

k=1 mim
T
i is to do the

multiplicationui ←Mvi asui ←
∑K

k=1(vi ·mi)mi. If we take
into account the time used to construct the matrixM, this modifica-
tion will be faster whenever (approximately)2IKD < (K + I)D2,
whereI is the number of iterations. IfI > K then we can setI = K
because the extra iterations will not help. Therefore it is sufficient to
show that2IKD < 2KD2. This reduces toI < D, so given that
we only claim that this technique is useful whenI ≪ D, this modi-
fication will always help where the overall technique is applicable.

B. SINGULAR VALUE DECOMPOSITION IN THE
SYMMETRIC POSITIVE DEFINITE CASE

Here we prove a result that is used in other parts of this document,
namely that ifA ∈ ℜn×n is symmetric positive definite and we do
the singular value decomposition

A = ULV
T (234)

where by definitionU andV are orthogonal (e.g.UUT = I) and
L diagonal with non-negative diagonal elements, then

A = ULU
T . (235)

This is the same as the spectral decomposition ofA becauseUT =
U−1. Equation (235) represents the intersection of the SVD and
spectral decompositions ofA since both decompositions are non-
unique in different ways. We can prove this result as follows. Firstly,
let ‖ · ‖ refer to the 2-norm in the rest of this section, i.e.‖x‖ =√
x · x and‖M‖ = maxx6=0

‖Mx‖
‖x‖ . Let S be the set of vectors

x 6= 0 such that‖Ax‖
‖x‖ = ‖A‖. Let the largest singular value ofA

(i.e. the largest diagonal element ofL) beλmax. We can assume
thatλmax > 0 because if it is zero thenU0VT = U0UT and we
are done. Ifk elements ofL share the valueλmax, with k ≥ 1,
let i1 . . . iK be the set of indicesi such thatlii = λmax. If ui is
the i’th column ofU andvi the i’th column ofV, it is not hard to
show from the decomposition of Equation 234 and by symmetry that
S = span (vi1 . . .vik) = span (ui1 . . .uik ). W andX be them
by k matrices[ui1 . . .uik ] and [vi1 . . .vik ] respectively. Because
the rows ofW and andX are orthonormal, we haveWTW =
XTX = I. Letw1 . . .wk be the columns ofW and likewise forX.
For any matrix likeW or X with orthonormal columns (say,W), if
v is in the space spanned by the columns ofW thenWWTv = v.
This is true for any column ofX as both sets of columns span the
same space, so

X = WW
T
X (236)

W = XX
T
W. (237)

Let
S = W

T
X. (238)

Now, X = WS from (236) andW = XST from (237), and mul-
tiplying the latter on the right byS and equating toX we have
WS = X = XSTS, soSTS is unit (becauseX has full rank).
This means thatS is orthogonal.

We will now show thatS is symmetric. Suppose thatS is not
symmetric, which means we can find somea such thatSa 6= STa.
We can use this to construct a vectorb such thatAb 6= ATb, which
is a contradiction becauseA is symmetric. We will setb = Xa.
Becauseb is in the span of the columns ofX, it is also in the span
of the columns ofW, and it is orthogonal to all the “other” columns
of U andV, so we can consider onlyW andX when computing
Ab. We haveAb = λmaxWXTb = λmax

(

XST
)

XT (Xa) =

λmaxXSTa. For the transpose, we haveATb = λmaxXWTb =
λmaxX

(

SXT
)

(Xa) = λmaxXSa. Now, we stated thatSa 6=
STa, and becauseX is full rank we can show thatXSa 6= XSTa,
which meansAb 6= ATb which is a contradiction.

BecauseS is both symmetric and orthogonal, it must be a reflec-
tion matrix, and reflection matrices have eigenvalues equalto ±1.
BecauseA is positive semi-definite, we can show thatS must not
have negative eigenvalues (otherwise, as above we could construct a
b such thatbTAb < 0). This means that the eigenvalues ofS must
all equal 1, and since it is also symmetric it must be the unit matrix.
This means thatW = X.

The rest of the proof is by induction on the number of nonzero
singular values inA. We construct

Ã = A− λmaxWW
T (239)

= UL̃V
T , (240)

whereL̃ is asL but with any diagonal elements equal toλmax set
to zero. If we can show that̃A = UL̃UT we can also show that
A = ULUT because we have shown that the singular vectors cor-
responding to the largest singular values are the same so replacing
columns ofV with the corresponding columns ofU would not lead
to any change.
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C. PRIOR PROBABILITIES FOR STATE VECTORS

This section describes an approach to smoothing the estimates of the
vectorsvjkm that is able to take advantage of correlations between
the different sub-models (indexk). This is a more principled solution
to the problem of insufficient data to estimate vectorsvjkm than the
ad-hoc smoothing approach used in Section 11.1.1. It makes use
of a prior distribution over the set of subspace vectorsvjkm for a
statej. This becomes a modification to the basic update for the
vectorsvjkm of Equation (84). This is an optional feature. The
approach described in Section 11.1.1 should be sufficient for a basic
implementation.

The use of priors over the vectorsvjkm is mainly motivated by
the introduction of sub-models, which makes it likely that we will
have instances of vectorsvjk1 for particular values of(j, k) that do
not have enough training data points to estimate them (the mixture
indexm would be 1 because we would never split such a vector).
Since the vectorsvjkm will not always comprise a majority of the
model’s parameters we do not anticipate that the use of priors will
make a very large difference, unless the number of sub-models K
becomes quite large. However it is an attractive feature because it
allows us to model correlations between different sub-models (index
k) which fixes a weakness of the model.

The way we propose to use priors is to estimate them from
the current value of the vectors, on each iteration of training. The
prior parameters estimated this way will not be very exact because
we have to estimate them from noisy estimates of the vectors,but
it is probably better than thead-hoc approach described in Sec-
tion 11.1.1. A convenient way of modeling the vectorsvjkm is to
model the correlations between the mean vector valuesvjk defined
below:

vjk =
1

Mjk

Mjk
∑

m=1

vjkm. (241)

We model these correlations across different values ofk, for a par-
ticular j, by concatenating the vectorsvjk into one long vectorvj

of dimensionKS and modeling it with a full-covariance Gaussian
distribution:

vj =







vj1

...
vjK






(242)

p(vj) = N (vj |µ(pr),Σ(pr)). (243)

We also need to model the deviation of individual vectorsvjkm

from the meanvjk in cases whereMjk > 1. We derive a suitable
model for this in Appendix D, which is:

p(vjk·|vjk) ∝ exp−0.5
(

(Mjk − 1)(D log 2π + log detΣ
(pr)
k )

+

Mjk
∑

m=1

v
T
jkm Σ

(pr)
k

−1
vjkm

−Mjkvjk Σ
(pr)
k

−1
vjk

)

, (244)

with trainable parametersΣ(pr)
k for 1 ≤ k ≤ K.

C.1. Estimating the prior

The estimation of the prior parameters from an existing set of vectors
is quite simple. We first cover the ML estimation and then consider

variance flooring. The large matrixΣ(pr) is estimated by:

µ
(pr) =

1

J

J
∑

j=1

vj , (245)

Σ
(pr) =

(

1

J

J
∑

j=1

vjv
T
j

)

− µ
(pr)

µ
(pr)T (246)

with vj as defined by Equations (241) and (242). Referring to Equa-
tion (263) in Appendix D, the prior on the deviations from themeans
is computed for1 ≤ k ≤ K as:

Σ
(pr)
k =

∑

j

(

∑Mjk

m=1 vjkmvT
jkm

)

−Mjkvjkv
T
jk

∑J

j=1 Mjk − 1
(247)

with vjk as defined in Equation (241).

C.2. Flooring the prior

Flooring the variance of the prior is necessary for a number of rea-
sons. Firstly, if we try to estimate it from vectors that havejust been
initialized or whose dimension has just been increased, theprior will
have zero variance in at least some dimensions which will stop the
training from going anywhere. Secondly, since we will most likely
apply the prior during estimation with a scaling factor applied to it,
if the scaling factor is too large and we have a lot of parameters with
few observations associated with them it is possible to havea sit-
uation where the prior can force the parameters to take very small
values, which makes the prior even smaller, and so on. A floor on
the prior is a good way to arrest this process. Thirdly, it is possible
that we may attempt to train a system where the dimensionKS of
the varianceΣ(pr) is greater than the number of observationsJ , and
in this caseΣ(pr) will be singular.

See Appendix I for a description of method used to floor a co-
variance matrix. It is analogous to diagonal variance flooring except
generalized to the full covariance case. There we define a function
A = floor(B,C) whereC is the “floor” matrix which must be pos-
itive definite andA is the floored version ofB.

The flooring applied to the matricesΣ(pr)
k is:

Σ̃
(pr)
k = floor

(

Σ
(pr)
k ,

1

τ (p1)
H

(sm)
k

−1
)

, (248)

with H
(sm)
k as defined in Equation (87). The quantityH(sm)

k

−1
is

dimensionally the same as a variance so it makes sense to use asmall
multiple of this for the variance floor on the prior. We anticipate
using a value ofτ (p1) of around 5 to 10, although the calculation
will probably not be very sensitive to this. It will be usefulto keep
track of how many eigenvalues are floored in the matrix flooring
process above; we expect a minority at most to be floored if the
process is working as expected. The eigenvalues on the diagonal of
L in Equation (291) will be a useful diagnostic; we expect themto
decrease quickly at first and then more slowly.

A suitable formula for flooring the joint varianceΣ(pr) is:

Σ̃
(pr) = floor

(

Σ
(pr),

1

τ (p2)
F

)

(249)

F =









H
(sm)
1

−1
0 . . .

0 H
(sm)
2

−1
. . .

...
...

. . .









. (250)
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Againτ (p2) is a constant that can be set to 5 or 10, and as before we
should keep track of the number of eigenvalues floored and inspect
the eigenvalues in Equation (291) within the flooring process.

C.3. Applying the prior

This section describes how we apply the priors obtained above dur-
ing model estimation. We apply them with a weightτ (pr) which we
anticipate might be in the range 5 to 10 for speech tasks. Below,
we use the letterP for the inverse of a varianceΣ, so for instance

P̃
(pr)
k = Σ̃

(pr)
k

−1
. We break up the large precision matrix̃P(pr)

intoS byS blocks and usẽP(pr)
kl to refer to the block at row-position

k, column-positionl; similarly we useµ(pr)
k to refer to thek’th S-

dimensional sub-vector of vectorµ(pr). When updating the vector
vjkm, the prior term is:

p(vjkm) ∝ −0.5vT
jkm

(

1

Mjk

P̃
(pr)
kk

+
Mjk − 1

Mjk

P̃
(pr)
k

)

vjkm

+v
T
jkm





∑

m′∈{1...Mjk}\{m}

1

Mjk

P̃
(pr)
k vjkm′

−
K
∑

k′=1

P̃
(pr)

kk′

(

(1− δ(k′, k))vjk′ − µ
(pr)

k′

)

)

. (251)

We would then use modified valuesHjkm andgjkm when comput-
ing the vectorvjkm using Equation (84), as follows:

H̃jkm = Hjkm + τ (pr)

(

1

Mjk

P̃
(pr)
kk +

Mjk − 1

Mjk

P̃
(pr)
k

)

(252)

g̃jkm = gjkm + τ (pr)





∑

m′∈{1...Mjk}\{m}

1

Mjk

P̃
(pr)
k v̂jkm′

−
K
∑

k′=1

P̃
(pr)

kk′

(

(1− δ(k′, k))v̂jk′ − µ
(pr)

k′

)

)

(253)

v̂jkm = H̃
−1
jkmg̃jkm (254)

Note that the vectors that appear on the right of Equations (252) have
a hat on. This is supposed to indicate that where other vectors within
the same state appear in the equation, we should use the already
updated versions if they have already been computed, ratherthan the
pre-update ones. The vector which is being updated,vjkm, appears
with zero coefficient on the right hand side of Equation (253)so
Equation (254) does not contain a circular reference. This update
may be done several times for each state, iterating overk andm
each time, to get a more exact answer. The reason why we formulate
it like this is to avoid the need to invert a very large matrix for each
state.

The data likelihood improvement should be measured using the
unmodified form of Equation (81). With a prior involved we canno
longer guarantee that the auxiliary function excluding theprior term
will improve on each iteration but we still expect it to improve in
practice.

D. MODELING OFFSETS FROM A MEAN

For the prior distributions over the vectorsvjkm, we require a model
for deviations from a mean value in a particular situation. The sit-

uation is, suppose we have a collection of N vectorsx1 . . .xN and
we have already somehow modeled their meanx̄ = 1

N

∑N

n=1 xn.
We want to model the deviations from the mean. These deviations
x̂n ≡ xn − x̄ cannot be modeled independently because they are
correlated (they are constrained to sum to one). A sensible prob-
ability model is to assume that the vectorsxn were independently
generated with a varianceΣ, and the mean was then removed. We
use this assumption below to work out the distribution of theoffset
vectorsx̂n.

Let us first cover the single-dimensional scalar case withΣ =
[1] and then generalize to higher dimensions. We retain the vector
notation even though the vectors have only one dimension. The dis-

tribution of x =







x1

...
xN






(before normalization) isIN . We now

want to work out the probability distribution over the offsets x̂n. We
can use a form of Bayes’ rule:

p(x̂|x̄) =
p(x̂, x̄)

p(x̄)
(255)

=
Kp(x)

p(x̄)
, (256)

with K a constant that reflects that fact that althoughx̂ andx̄ deter-
minex and vice versa, the likelihood valuesp(x̂, x̄) andp(x) may
not be the same because of scaling issues. This may depend on a
choice of what exactly we mean when we writep(x̂), but for current
purposes it does not matter.K is a function only ofN and we will
not need to work out its value. We can work outp(x̄) by noting that
it has variance1

N
, and using the fact that̄x = 1

N
xT1 with 1 a vector

of all ones. Ignoring normalizers, the distributions overx, x̄ andx̂
can be expressed as:

p(x) ∝ exp
(

−0.5xT
Ix
)

(257)

p(x̄) ∝ exp

(−0.5
N

x
T
11

T
x

)

(258)

p(x̂|x̄) ∝ exp

(

−0.5xT

(

I− 1

N
11

T

)

x

)

. (259)

The normalizing factor for Equation (259) can be worked out from
Equation (256), putting inx = 0. We get:

p(x̂|x̄) = K exp−1

2
((N − 1) log 2π (260)

+x
T

(

I− 1

N
11

T

)

x (261)

Note that although we write the likelihood asp(x̂|x̄) the result does
not actually depend on the value ofx̄. For the vector-valued case
with non-unit varianceΣ of dimensionD, we can work out:

p(x̂|x̄) = K exp−1

2
((N − 1)(D log 2π + log detΣ)

+

N
∑

n=1

x
T
nΣ

−1
xn −N x̄Σ

−1
x̄). (262)

If we are in a situation where we want to train the varianceΣ given
given a collection of setsx(m)

1 . . .x
(m)
Nm

for 1 ≤ m ≤ M , each
potentially of a different sizeNm, the update equation is:

Σ =

∑M

m=1

(

∑Nm

n=1 x
(m)
n x

(m)
n

T
)

−Nmx̄(m) x̄(m) T

∑M

m=1 Nm − 1
(263)
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with the average quantities̄x(m) being defined in the obvious way.
The derivation is fairly simple.

E. MAXIMUM LIKELIHOOD GAUSSIAN CLUSTERING
ALGORITHM

What we are describing in this section is an algorithm to do Maxi-
mum Likelihood clustering ofJ diagonal covariance Gaussians to a
smaller numberI of diagonal covariance Gaussians, by minimizing
the likelihood loss (weighted bywj ) that we would get if we were
to model the data from each Gaussian1 ≤ j ≤ J by the Gaussian
from its cluster1 ≤ i ≤ I . Note that the indicesj andi as used here
have no intrinsic connection with the same letters used elsewhere in
this document (except that the number of clustersI will typically be
the same as the number of GaussiansI in the shared GMM).

The input to this algorithm is a set ofJ Gaussians with weights
wj , meansµj and diagonal covariancesΣj (with diagonal elements
σ2
jd). The output is a set ofI Gaussians corresponding to cluster

centers, with weights̄wi, meansµ̄i and diagonal variances̄Σi, to-
gether with a mapping from each of theJ Gaussians to theI cluster
centers which are represented as diagonal Gaussian distributions.

This algorithm is not particularly fast. There are various ways
of speeding it up but they tend be quite complicated. We suggest
initially throwing away all but the Gaussians with the highest counts
(e.g. just keep the 10k most likely Gaussians) in order to make it
acceptably fast, and also limiting the number of iterations, e.g. to
40 or so. Regardless, Gaussians with zero weights should be thrown
away at the start. We should also avoid taking a log on each dimen-
sion of the computations below, instead keeping a running product
and taking a log at the end; we can detect if we have a floating point
overflow or underflow by checking for zeros or infinities when we
come to take the log, and in that case just back off to the inefficient
version.

The algorithm is easiest to write down if we represent the initial
and clustered Gaussians as statistics. We will write

cj = wj (264)

mj = cjµj (265)

sj = sjd, 1 ≤ d ≤ D : (266)

sjd = cj(µ
2
jd + σ2

jd) (267)

as the zeroth, first and diagonal second order statistics respectively
of the initial Gaussians. Let us use the notationSi = {j1, j2 . . .} as
the set of Gaussians in clusteri, andc(j) as the cluster to whichj
currently belongs. We start with a random assignment of Gaussians
to clusters, e.g. usec(j) = (j mod I) + 1. We maintain throughout
the algorithm the statistics for the clustered Gaussians, which are
always equal to:

c̄i =
∑

j∈Si

cj (268)

m̄i =
∑

j∈Si

mj (269)

s̄i =
∑

j∈Si

sj (270)

The likelihood contribution of a clusteri is:

l(i) = −0.5c̄i
(

2πD +D + log

D
∏

d=1

(

s̄id
c̄i
− m̄2

id

c̄2i

)

)

, (271)

and we can ignore the2πD+D as it will not affect the answer. The
objective function we are optimizing is the sum of all thel(i). It is
useful to keep the values ofl(i) stored throughout the process. The
basic operation of this algorithm is: supposing Gaussianj is cur-
rently in clusteri (and is not the only element in clusteri), try mov-
ing j to some other clusteri′ and see if this would increase the like-
lihood. We do this by making a temporary copy of the statistics for
statesi andi′, subtracting the statistics forj from i and adding them
to i′, and computing the altered values ofl(i) andl(i′). If the sum of
the altered valuesl(i)+ l(i′) is greater than the current sum, we can
movej from clusteri to i′. Moving j will involve keeping various
quantities updated:Si, c̄i, m̄i, s̄i, l(i), Si′ , c̄i′ , m̄i′ , s̄i′ , l(i

′), c(j).
The exact order of attempting to move Gaussianj from i to i′ is

up to the coder. The obvious approach is: on each iteration wevisit
eachj which is not part of a singleton cluster, and actually test the
improvement we get from movingj to eachi′ other thanc(j), and
then pick the best. A possibly more efficient approach would be on
each iteration to test movingj to some subset of all thei′, where the
subset is determined by the iteration number: e.g. on iterationp, pick
all i′ such that(i′ + j) ≡ p(modK) for someK (e.g. K = 10).
Then the first time we find ani′ that we would be willing to movej
to, move it and continue on to the nextj.

The stopping criterion can be either to stop when we see no more
changes (e.g. when we have goneK iterations with no Gaussians
moving), or to stop after a predetermined number of iterations. After
we stop, we have to convert the statistics back into the form of a
mean and variance and a weight. This is quite obvious:

µ̄i =
1

c̄i
m̄i (272)

σ̄2
id =

s̄id
c̄i
− m̄2

id

c̄2i
(273)

w̄i =
c̄i
∑

i c̄i
. (274)

The covariances̄Σi that result from this procedure are diagonal.

F. MATRIX CALCULUS DERIVATIONS

F.1. Derivations for Equations (217) and (218)

For Equations (217) and (218) we need to compute the first and sec-
ond derivatives of the expressionlog det(A + k∆) with respect to
k. The first derivative is

d

dk
log det(A+ k∆) = tr ((A+ k∆)−1

∆), (275)

which we can obtain from the formulad
dx

log |M| = tr (M−1 dM

dx
).

For the second derivative we first used
dx

tr (M) = tr (dM
dx

). This
tells us that

d2

dk2
log det(A+ k∆) = tr (

d

dx
((A+ k∆)−1

∆)).(276)

We then use the formulad
dx

(MN) = MdN
dx

+ dM

dx
N to turn the

right hand side of Equation (276) totr (( d

dx
(A + k∆)−1)∆). We

can use the formulad
dx

M−1 = −M−1 dM

dx
M−1 withM equivalent

to (A+ k∆), to arrive at the final formula:

d2

dk2
log det(A+ k∆)=tr ((A+ k∆)−1

∆(A+ k∆)−1
∆).

(277)
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G. OPTIMIZING POORLY CONDITIONED QUADRATIC
AUXILIARY FUNCTIONS

G.1. Vector optimizations

The techniques described in this document include a number of prob-
lems where the auxiliary function and update are of the general form:

Q(x) = x · g − 1

2
x
T
Hx (278)

x̂ = H
−1

g, (279)

whereH is symmetric. There is no problem here ifH is of full
rank; however, there are many cases we encounter where either H
is not of full rank, or the condition ofH (the ratio of smallest to
largest singular values) is so large thatH is indistinguishable from
a reduced rank matrix. This arises naturally whereH is a weighted
outer product of vectorsvn andg is a weighted sum ofvn:

H =
N
∑

n=1

anvnv
T
n (280)

g =

N
∑

n=1

bnvn, (281)

with an ≥ 0. It will always be the case in the problems we deal with
here that nonzerobn implies nonzeroan (otherwise the auxiliary
function might have an infinite maximum value). If the numberof
nonzeroan is smaller than the dimension of the problem,A will be
of reduced rank and we cannot invert it. If we had access to theorig-
inal vectorsvn we could solve the problem in a least squares sense
in the space spanned by the vectors, but we are generally forced to
work from the statisticsg andH themselves. Numerically determin-
ing the rank of a matrix likeH is usually not practical [12]. There-
fore we have developed a procedure for solving this problem which
is robust given imprecise statistics. Because we cannot exactly iden-
tify the “null-space” of the problem, trying to solve the problem in a
least squares sense and setting those dimensions ofx to zero would
be dangerous. Instead we aim to leavex the same as it originally
was in those dimensions by reformulating the problem in terms of
the offset∆ = x̂− x.

The method is as follows:

• If H is the zero matrix, leave the variablex the same. Other-
wise:

• Computēg = g−Hx. This is the value ofg in the auxiliary
function in∆.

• Do the SVDH = ULVT , which impliesH = ULUT

becauseH is positive semi-definite.

• Compute a floorf = max(ǫ, maxi lii
K

), with K a maximum
condition (e.g.104) andǫ for example10−40.

• Compute the floored diagonal matrixL̃, with l̃ii = max(f, lii).

• Compute∆ = U(L̃−1(UT ḡ)) (the bracketing shows the
order of evaluation).

• Computex̂ = x+∆.

• Measure the change in the auxiliary function of Equation 278
betweenx andx̂.

• If this change is negative, print out a warning, do not update
this parameter (returnx), and continue. Otherwise, return̂x
and accumulate the total auxiliary function change for diag-
nostic purposes.

Note that if the largest (absolute) element ofH is nonzero but
very tiny (e.g. less than10−40), it may be necessary to scale it before
doing the SVD and then apply the reverse scale to the matrixL;
standard SVD algorithms can fail with very small values.

G.2. Matrix optimizations

In the update of the projection matricesMki andNki we encounter
an auxiliary function and update which is of the general form:

Q(M) = tr (MT
Σ

−1
Y)− 1

2
tr (Σ−1

MQM
T ) (282)

M̂ = YQ
−1, (283)

with Q a symmetric positive semi-definite matrix, andY the same
dimension asM, andΣ is symmetric positive definite. Again the
problem arises if the condition ofQ is poor. We will simply state
the procedure used, as the rationale is the same as above.

• If Q is the zero matrix, do not updateM. Otherwise:

• ComputeȲ = Y −MQ

• Do the SVDQ = ULVT , which impliesQ = ULUT

becauseQ is positive semi-definite.

• Compute a floorf = max(ǫ, maxi lii
K

), with K a maximum
condition (e.g.104) andǫ for example10−40.

• Compute the floored diagonal matrixL̃, with l̃ii = max(f, lii).

• Compute∆ = ((ȲU)L̃−1)UT , andM̂ = M+∆.

• Compute the change in auxiliary function by evaluating
Equation (282) forM andM̂.

• If the auxiliary function decreased, print a warning, return the
old valueM and continue. Otherwise, accumulate the change
in auxiliary function for diagnostic purposes and return the
new valueM̂.

H. CONDITION-LIMITED INVERSION

Here we describe a method of inverting symmetric positive semi-
definite matrices using a method that gives a result for matrices that
are singular or close to singular. Given a symmetric positive semi-
definite matrixA, we are returning̃A−1, whereÃ is a matrix very
close toA but modified to floor its eigenvalues the largest eigenvalue
of A divided by a specified condition numberK.

The 2-norm conditionκ2(A) is the ratio of largest to smallest
singular values (it can be defined in various ways depending on the
matrix norm used, but this is a common one). For matrix inversion
to be stable, the condition should be much smaller than the inverse
of the machine precision [12], e.g. much smaller than about224 for
single precision arithmetic. Typically, depending on the task, we will
be able to limit the condition to be much smaller than this, e.g. to
1000 or so.

First we define a function:

Ã = limitcond(A,K), (284)

which limits the condition of a symmetric positive semi-definite ma-
trix A by flooring its eigenvalues to1/K times the largest eigen-
value. The process of computing̃A gives an easy way to compute
its inverse.
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Given a matrixA which is symmetric positive semi-definite, and
a specified maximum conditionK, we do the singular value decom-
position

A = ULV
T (285)

with U andV orthogonal andL diagonal, and return the matrix

Ã = UL̃U
T (286)

with the modified diagonal matrix̃L with its diagonal elements
floored to the valuef = max(ǫ, maxi lii

k
), sol̃ii = max(f, lii). We

can use a number like10−40 for ǫ; this is to avoid getting infinite
answers. In the kinds of problems where we will use this, thisis
acceptable. The number of diagonal elements floored is a useful
diagnostic. In the situations where condition-limiting isuseful we
will generally actually require the inverse of this condition-limited
matrix, which we can do as:

Ã
−1 = UL̃

−1
U

T . (287)

AssumingA was positive semi-definite, the difference‖Ã − A‖2
will be no more thanf . Note that we returnUT rather thanVT

on the right to ensure symmetry and positive definiteness– ifA is
symmetric,U andV will in general be the same up to signs of the
columns, and these signs will be the same for positive definite A.
However ifA has a rank deficiency of more than two, the rows and
columns ofU andV corresponding to the null-space could be ro-
tated arbitrarily, and by replacingV with U we ensure that the result
is symmetric. Note that if a column ofV had a different sign from
the corresponding column ofU and the correspondinglii was larger
than the floor we would effectively be flipping the sign of the eigen-
value from negative to positive, but this violates our assumption that
A was initially positive semi-definite.

Note that if the largest absolute value of any element inA is
nonzero but very tiny, e.g. less than10−40, standard singular value
decomposition algorithms may fail. Our implementation of singular
value decomposition detects this condition and prescales the matrix
before giving it to the standard algorithms, and then scalesthe sin-
gular values afterward by the inverse of the pre-scaling factor.

I. FLOORING A MATRIX

Here we describe a general procedure for flooring a matrix, that is
useful for flooring full covariance matrices and for other purposes.
We define the function

A = floor(B,C) (288)

whereB is a symmetric positive semi-definite matrix andC is a
symmetric positive definite matrix of the same dimension, asfol-
lows. First, we do the Cholesky decompositionC = LLT . Then we
define

D = L
−1

BL
−T (289)

We do the singular value decomposition

D = UMV
T (290)

which becauseD is symmetric positive semi-definite implies

D = UMU
T (291)

(see Appendix B), withM diagonal andU orthogonal, and define
M′ as the diagonal matrixM of Equation (291) with its diagonal
elements floored at 1, som′

ii = max(1, mii). Then we set

D
′ = UM

′
U

T (292)

A = LD
′
L

T . (293)

This functionfloor(·, ·) is like amax operation on symmetric ma-
trices, except that it treats the first and second arguments differently
(in particular, the second is required to be positive definite).

J. ESTIMATING AND USING PRIORS OVER THE
PROJECTIONS

In this section we describe how to train and use prior distributions
over the projectionsM andN. This is in order to get better parame-
ter estimates and to solve the problems of poor conditioningthat we
encounter during update.

We will describe the procedure only forM sinceM andN are
mirror images of each other and the generalization is obvious. The
prior distribution we will use overM is a Gaussian prior with a
constrained covariance structure. Essentially we are trying to find
a covarianceΣr andΣl such that the elements ofΣ−0.5

l MΣ−0.5
r

are independently distributed with unit variance. We will assume
that we are estimating a single prior that is shared between all sub-
modelsk; we do this because it is possible that the number of pro-
jectionsIk within a particulark could be less than the number of
rows or columns ofM, which would cause problems in parameter
estimation. This procedure does assume that the total number of pro-
jections is more than the larger of the number of rows or columns of
M, but if not we could simply limit the condition of the covariances
by some floor as described in Appendix H.

We will simply state the procedure as the derivation is not
too difficult. Recall thatMki is a D by S+1 matrix. First we
find the meanM̄ = 1

∑

k Ik

∑

k,i Mki. We initializeΣr = I ∈
ℜ(S+1)×(S+1) andΣl = I ∈ ℜD×D . Then for several iterations
(e.g. five iterations), we do:

Σl =
1

D
∑

k Ik

∑

k,i

(Mki−M̄)Σ−1
r (Mki−M̄)T (294)

Σr =
1

(S+1)
∑

k Ik

∑

k,i

(Mki−M̄)TΣ−1
l (Mki−M̄). (295)

At this point we can limit the condition ofΣl and Σr to some
large value (say, 1000) by flooring eigenvalues as describedin Ap-
pendix H, in order to cover the case where there are too few matrices
to estimate the prior. We can make sense of these equations bynotic-
ing that ifM̃ki = (Mki − M̄)Σ−0.5

r which isMki with the global
mean removed and with the columns decorrelated, and ifm̃kid is the
d’th row of this, then we are settingΣl to the variance of these rows.
The expression for the likelihood of a matrixM given our prior is:

logP (M) = exp−1

2

(

D(S+1) log(2π) + (S+1) detΣr

+D detΣl + tr
(

Σ
−1
l (M− M̄)Σ−1

r (M− M̄)T
)

)

. (296)

We will scale the prior with a scaleτ (pr) (e.g. 10 or 20), the same
value that we use for the priors over the other parameters. This is re-
lated to the language model scale used in decoding as it is theweight-
ing factor between probabilities produced by our model and “real”
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probabilities. The auxiliary functionQ′(Mki) that includesτ (pr)

times the prior plus the original auxiliary function of Equation (100)
can be written as follows:

Q′(Mki) = K′′ + tr (MT
Σ

−1
ki Yki)

−1

2
tr (Σ−1

ki MkiQkiM
T
ki)

+τ (pr)tr (MT
Σ

−1
l M̄Σ

−1
r )

− τ (pr)

2
tr (Σ−1

l MkiΣ
−1
r M

T
ki). (297)

We can write this more compactly as:

F (M) = tr (MT
G) − 1

2
tr (P1MQ1M

T )

−1

2
tr (P2MQ2M

T ) (298)

G = Σ
−1
ki Yki + τ (pr)

Σ
−1
l M̄Σ

−1
r (299)

P1 = Σ
−1
ki (300)

Q1 = Qki (301)

P2 = Σ
−1
l (302)

Q2 = τ (pr)
Σ

−1
r , (303)

whereP1, P2 andQ2 will be symmetric positive definite andQ1

will be symmetric positive semidefinite. We can maximize Equa-
tion (298) by computing a transformationT that simultaneously di-
agonalizesP1 andP2 and doing a row by row update in the trans-
formed space. Let us suppose we want to makeP1 unit and diago-
nalizeP2. We do the Cholesky decomposition

P1 = LL
T , (304)

defineS = L−1P2L
−T , do the SVD

S = UDV
T (305)

(which impliesS = UDUT becauseS is positive definite, see Ap-
pendix B), and our transform is

T = U
T
L

−1, (306)

so thatTP1T
T = I andTP2T

T = D. Let us defineM′ =
T−TM, and if we defineG′ = TG we can write our auxiliary
function as:

F (M′) = M
′T
G

′ − 1

2
tr (M′

Q1M
′T )

−1

2
tr (DM

′
Q2M

′T ). (307)

(308)

We can separate this out for each rowmn of M′, so (usingg′
n as

then’th row of G′, anddn as then’th diagonal element ofD):

F (mn) = m
′
n · g′

n −
1

2
m

′
n
T
(Q1 + dnQ2)m

′
n, (309)

so the solution is:

m
′
n = g

′
n(Q1 + dnQ2)

−1 (310)

M = T
T
M

′. (311)

K. RENORMALIZING THE PHONETIC SUBSPACE

It can be useful to renormalize the phonetic subspace (the space in
which the vectorsvjkm lie) on each iteration. This is firstly to avoid
numerical issues that can arise if the vectors are too highlycorre-
lated between dimensions or have a too large or too small dynamic
range, and secondly to concentrate most of the important variation
in the lower-numbered dimensions, which is convenient if wewant
to display the phonetic subspace. If we ignore numerical issues and
questions of flooring, condition-limiting and so on that arise sec-
ondary to numerical issues, this renormalization makes absolutely
no difference at all to the model.

The aim in this renormalization is to ensure that the vectors
vjkm have unit variance and that the most important variation in the
vectors is localized to the first dimensions. We ensure this by diago-
nalizing the matrixH(sm)

k of Equation (87) and sorting its projected
dimensions from largest to smallest. This is appropriate because
H

(sm)
k is analogous to a precision matrix (an inverse covariance) and

vjkm is analogous to a mean, so if we have ensured that the means
have unit variance if we put the largest elements of the diagonalized
precision first it corresponds to having the dimensions withsmallest
within-class variance first, once the between-class variance is made
equal to unity. Some of these equations will look a little different
from the typical LDA formulation because we are dealing withan
inverse variance like quantity rather than with a variance quantity.
We avoid invertingH(sm)

k because it will be singular before the sec-
ond iteration of training.

The renormalization is done separately for each sub-modelk.
For each sub-modelk we compute the variance

Sk =
1

∑

j Mkj

∑

j

Mj
∑

m=1

vjkmv
T
jkm, (312)

which is the variance of the vectors prior to normalization.If Sk

is singular (e.g. its condition is more than1010) we should skip
the renormalization because the vectors are linearly dependent; it
probably means we have not yet done any iterations of update.We
then do the Cholesky decomposition

Sk = LL
T . (313)

A transformation that diagonalizesSk is nowL−1. We then compute
the “transformed”H(sm)

k as:

P = L
T
H

(sm)
k L. (314)

(Note that becauseH(sm)
k is a precision-like quantity we must trans-

form with the inverse transpose of the transformation that would ap-
ply to a variance-like quantity). We then do the singular value de-
composition:

P = ULV
T , (315)

which implies thatP = ULUT becauseP is positive semi-definite.
We must make sure to sort the diagonal ofL and the corresponding
columns ofU from largest to smallest singular value. Now we can
clearly diagonalizeH(sm)

k with UTLT , and the appropriate trans-
formation on the vectors themselves is the inverse tranposeof this,
which isUTL−1 (we use here the fact thatU−1 = UT becauseU
is orthogonal). So the transformF and the resulting updates to the
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parameters are below:

F = U
T
L

−1 (316)

v̂jkm = Fvjkm (317)

ŵki = F
−T

wki (318)

M̂ki = MkiF
−1. (319)

It is easy to show that the productsMkivjkm andwki · vjkm will
be the same before and after this transformation. Note that if we are
not using offsets on the vectorsvjkm, i.e. we do not have expres-
sions likev+

jkm then the vectors themselves contain the unit offset
term; typically after the transformation described above this unit off-
set term will to the first dimension in the transformed space so the
most significant dimensions for display and visualization purposes
would be dimensions two and three.
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