
Krylov Subspace Descent for Deep Learning

Oriol Vinyals Daniel Povey

University of California, Berkeley Microsoft Research

Abstract

In this paper, we propose a second order
optimization method to learn models where
both the dimensionality of the parameter
space and the number of training samples is
high. In our method, we construct on each
iteration a Krylov subspace formed by the
gradient and an approximation to the Hes-
sian matrix, and then use a subset of the
training data samples to optimize over this
subspace. As with the Hessian Free (HF)
method of Martens (2010), the Hessian ma-
trix is never explicitly constructed, and is
computed using a subset of data. In prac-
tice, as in HF, we typically use a positive def-
inite substitute for the Hessian matrix such
as the Gauss-Newton matrix. We investigate
the effectiveness of our proposed method on
deep neural networks, and compare its per-
formance to widely used methods such as
stochastic gradient descent, conjugate gradi-
ent descent and L-BFGS, and also to HF. Our
method leads to faster convergence than ei-
ther L-BFGS or HF, and generally performs
better than either of them in cross-validation
accuracy. It is also simpler and more gen-
eral than HF, as it does not require a pos-
itive semidefinite approximation of the Hes-
sian matrix to work well nor the setting of
a damping parameter. The chief drawback
versus HF is the need for memory to store a
basis for the Krylov subspace.

1 Introduction

Many algorithms in machine learning and other sci-
entific computing fields rely on optimizing a function

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

with respect to a parameter space. In many cases, the
objective function being optimized takes the form of a
sum over a large number of terms that can be treated
as identically distributed: for instance, labeled train-
ing samples. In deep learning, the problem that we are
trying to solve often consists of minimizing the negated
log-likelihood:

f(θ) = − log(p(Y|X;θ)) = −

N
∑

i=1

log(p(yi|xi;θ)) (1)

where (X,Y) are our observations and labels respec-
tively, and p is the posterior probability of our labels
which is modeled by a deep neural network with pa-
rameters θ. In this case it is possible to use subsets of
the training data to obtain noisy estimates of quanti-
ties such as gradients; the canonical example of this is
Stochastic Gradient Descent (SGD).

The simplest reference point to start from when ex-
plaining our method is Newton’s method with line
search, where on iteration m we do an update of the
form:

θm+1 = θm − αH−1
m gm, (2)

where Hm and gm are, respectively, the Hessian and
the gradient on iteration m of the objective func-
tion (1); here, α would be chosen to minimize (1) at
θm+1. For high dimensional problems it is not practi-
cal to invert the Hessian; however, we can efficiently
approximate (2) using only multiplication by Hm, by
using the Conjugate Gradients (CG) method with a
truncated number of iterations. In addition, it is pos-
sible to multiply by Hm without explicitly forming it,
using what is known as the “Pearlmutter trick” (Pearl-
mutter, 1994) for multiplying an arbitrary vector by
the Hessian; this is described for neural networks but
is applicable to quite general types of functions1. This
type of optimization method is known as “truncated
Newton” or “Hessian-free inexact Newton” (Morales

1This was actually known to the optimization commu-
nity prior to (Pearlmutter, 1994); see Nocedal and Wright
(2006, Chapter 8).

Krylov Subspace Descent for Deep Learning

and Nocedal, 2000). In Byrd et al. (2010), this method
is applied but using only a subset of data to approx-
imate the Hessian Hm. A more sophisticated ver-
sion of the same idea was described in the earlier pa-
per (Martens, 2010), in which preconditioning is ap-
plied, the Hessian is damped with the unit matrix in a
Levenberg-Marquardt fashion, and the method is ex-
tended to non-convex problems by using the Gauss-
Newton matrix (described below) as a substitute the
Hessian. These changes made it possible to use HF
to effectively train deep networks from random initial-
izations, which would not have been possible with any
previously described versions of HF.

Our method is quite similar to the one described
in Martens (2010), which we will refer to as Hes-
sian Free (HF). We also multiply by the Hessian (or
Gauss-Newton matrix) using the Pearlmutter trick on
a subset of data, but on each iteration, instead of ap-
proximately computing (Hm + λI)−1gm using trun-
cated CG, we compute a basis for the Krylov sub-
space spanned by gm,Hmgm, . . .HK−1

m gm for some K
fixed in advance (e.g. K = 20), and numerically op-
timize the parameter change within this subspace, us-
ing BFGS to minimize the original nonlinear objective
function measured on a subset of the training data. It
is easy to show that, for any λ, the approximate so-
lution to Hm + λI found by K iterations of CG will
lie in this subspace, so we are in effect automatically
choosing the optimal λ in the Levenburg-Marquardt
smoothing method of HF – although our algorithm is
free to choose a solution more general than this. This
is clear from the CG algorithm itself, and from the fact
that the order-K Krylov subspaces generated by g and
H+λI are all the same irrespective of λ. We note that
both our method and HF use preconditioning, which
we have glossed over in the discussion above. Com-
pared with HF, the advantages of our method are:

• Greater simplicity and robustness: there is no
need for heuristics to initialize and update the
smoothing value λ.

• Generality: unlike HF, our method can be applied
even if H (or whatever approximation or substi-
tute we use) is not positive semidefinite.

• Empirical advantages: our method generally
seems to work better than HF in both optimiza-
tion speed and classification performance.

The chief disadvantages versus HF are:

• Memory requirement: we require storage of K
times the parameter dimension to store the sub-
space (HF does not require memory proportional
to the number of CG iterations).

• Convergence properties: the use of a subset of
data to optimize over the subspace will prevent
convergence to an optimum.

Regarding the convergence properties: for deep neural
networks, we view this as more of a theoretical than a
practical problem, since for typical setups in training
deep networks the residual parameter noise due to the
use of data subsets would be far less than that due to
overtraining. We hope that not-too-restrictive condi-
tions could be found under which our algorithm (or
a modified version of it, with increasing subset sizes)
could be shown to converge; however, we do not have
either the time or the skills needed to perform this
type of analysis ourselves. We also believe that appli-
cation of the normal types of convergence proof would
fail to capture the reasons why our algorithm is better
than gradient descent, and it would be very hard to
obtain convergence results that were strong enough to
be interesting.

Our motivation for the work presented here is twofold:
firstly, we are interested in large-scale non-convex op-
timization problems where the parameter dimension
and the number of training samples is large and the
Hessian has large condition number. We had previ-
ously investigated quite different approaches based on
preconditioned SGD to solve an instance of this type
of optimization problem (our method could be viewed
as an extension to Le Roux et al. (2007)), but after
reading Martens (2010) our interest switched to meth-
ods of the HF type. Secondly, we have an interest
in deep neural nets, particularly to solve problems in
speech recognition, and we were intrigued by the sug-
gestion in Martens (2010) that the use of optimization
methods of this type might remove the necessity for
pretraining, which would result in a welcome simplifi-
cation. Other recent work on the usefulness of second
order methods for deep neural networks includes Ben-
gio and Glorot (2010) and Le et al. (2011).

2 The Hessian matrix and the

Gauss-Newton matrix

The Hessian matrix H (that is, the matrix of sec-
ond derivatives w.r.t. the parameters) can be used
in HF optimization whenever it is guaranteed positive
semidefinite, i.e. when minimizing functions that are
convex in the parameters. For non-convex problems,
it is possible to substitute a positive definite approxi-
mation to the Hessian. One option is the Fisher infor-
mation matrix,

F =
∑

i

gig
T
i , (3)

Oriol Vinyals, Daniel Povey

where indices i correspond to samples and the gi quan-
tities are the gradients for each sample. This is a suit-
able stand-in for the Hessian because it is in a certain
sense dimensionally the same, i.e. it changes the same
way under transformations of the parameter space. If
the model can be interpreted as producing a prob-
ability or likelihood, it is possible under certain as-
sumptions (including model correctness) to show that
close to convergence, the Fisher and Hessian matri-
ces have the same expected value. The use of the
Fisher matrix in this way is known as Natural Gra-
dient Descent (Amari, 1998); in Le Roux et al. (2007),
a low-rank approximation of the Fisher matrix was
used instead. Another alternative that has less theo-
retical justification but which seems to work better in
practice in the case of neural networks is the Gauss-
Newton matrix, or rather a slight generalization of the
Gauss-Newton matrix that we will now describe.

2.1 The Gauss-Newton matrix

The Gauss-Newton matrix is defined when we have a
function (typically nonlinear) from a vector to a vec-
tor, f : R

n → R
m. Let the Jacobian of this func-

tion be J ∈ R
m×n, then the Gauss-Newton matrix is

G = JTJ, with G ∈ R
n×n. If the problem is least-

squares on the output of f , then G can be thought of
as one term in the Hessian on the input to f . In its
application to neural-network training, for each train-
ing example we consider the network as a nonlinear
function from the neural-network parameters θ to the
output of the network, with the neural-network input
treated as a constant. As in Schraudolph (2002), we
generalize this from least squares to general convex
error functions by using the expression JTHJ, where
H is the (positive semidefinite) second derivative of
the error function w.r.t. the neural network output.
This can be thought of as the part of the Hessian that
remains after ignoring the nonlinearity of the neural-
network in the parameters. In the rest of this docu-
ment, following Martens (2010) we will refer to this
matrix JTHJ simply as the Gauss-Newton matrix, or
G, and depending on the context, we may actually be
referring to the summation of this expression over a
number of neural-network training samples.

2.2 Efficiently multiplying by the

Gauss-Newton matrix

As described in Schraudolph (2002), it is possible to
efficiently multiply a vector by G using a version of
the “Pearlmutter trick”; the algorithm is similar in
spirit to backprop and for completeness we give it here
as Algorithm 1; however, the reader should feel free
to skip over this section if this level of detail is not
required.

Our notation and our derivation for this algorithm dif-
fer from Pearlmutter (1994), Schraudolph (2002), and
we will explain this briefly; we find our approach eas-
ier to follow. The basic idea is to write down an al-
gorithm that efficiently computes the inner product of
the Gauss-Newton matrix with two given vectors (i.e.
s = θ

T
2 Gθ1), and then use reverse-mode automatic dif-

ferentiation (similar to neural-net backprop) to com-
pute the derivative of this scalar w.r.t. θ2, which will
equal the desired product Gθ1.

First we will explain how we compute the inner prod-
uct. Imagine that we are given a parameter vector θ,
and two vectors θ1 and θ2 which we interpret as direc-
tions in parameter space; we want to write down an
algorithm that computes the scalar s = θ

T
2 Gθ1. As-

sume the neural-network input is given and fixed; let
v be the network output, and write it as v(θ) to em-
phasize the dependence on the parameters, and then
let v1 be defined as

v1 = lim
α→0

1

α
(v(θ + αθ1)− v(θ)) , (4)

so that v1 = Jθ1. We define v2 similarly. These can
both be computed in a modified forward pass through
the network, using forward-mode automatic differenti-
ation. Then, if H is the Hessian of the error function
in the output of the network (taken at parameter value
θ), s is given by

s = vT
2 Hv1, (5)

since vT
2 Hv1 = θ

T
2 J

THJθ1 = θ
T
2 Gθ1. The Hes-

sian H of the error function would typically not be
constructed as a matrix, but we would compute (5)
given some analytic expression for H. This Hessian H

w.r.t. the output activations for a particular sample
should not be confused with the Hessian w.r.t. the
parameter vector, even though we use the same letter.
Suppose we have written down the algorithm for com-
puting s (we have not done so here because of space
constraints). Then we treat θ1 as a fixed quantity,
but compute the derivative of s w.r.t. θ2, taking θ2

around zero for convenience. This derivative equals
the desired product Gθ1. This is how we obtained Al-
gorithm 1. In the algorithm we denote the derivative
of s w.r.t. a quantity x by x̂, i.e. by adding a hat. We
note that in this algorithm, we have a “backward pass”
for quantities with subscript 2, which did not appear
in the forward pass, because they were zero (since we
take θ2 = 0) and we optimized them out.

Something to note here is that when the linearity of
the last layer is softmax and the error is negated cross-
entropy (equivalently negated log-likelihood, if the la-
bel is known), we actually view the softmax nonlin-
earity as part of the error function. This is a closer
approximation to the Hessian, and the error function
remains positive semidefinite.

Krylov Subspace Descent for Deep Learning

To explain the notation of Algorithm 1: h(i) is the
input to the nonlinearity of the i’th layer and v(i)

is the output; � means elementwise multiplication;
φ(i) is the nonlinear function of the i’th layer, and
when we apply it to vectors it acts elementwise; W(1)

is the neural-network weights for the first layer (so
h(1) = W(1)v(0), and so on); we use the subscript
1 for quantities that represent how quantities change
when we move the parameters in direction θ1 (as in
Eq. (4)). The error function is written as E(v(L), y)
(where L is the last layer), and y, which may be a dis-
crete value, a scalar or a vector, represents the super-
vision information which the network is trained with.
Typically E would represent a squared loss or negated
cross-entropy. In the squared-loss case, the quantity
∂2

∂v2 E(v
(L), y) in Line 10 of Algorithm 1 is just the unit

matrix. The other case we deal with here is negated
cross entropy. We include the soft-max nonlinearity in
the error function, treating the elements of the output
layer v(L) as unnormalized log probabilities. If the el-
ements of v(L) are written as vj and we let p be the
vector of probabilities, with pj = exp(vj)/

∑

i exp(vi),
then the matrix H of second derivatives is given by

∂2

∂v2
E(v(L), y) = diag(p)− ppT . (6)

Algorithm 1 Compute product θ̂2 = Gθ1:
MultiplyG(θ,θ1,x, y)

1: // Note, θ = (W(1)
,W(2)

, . . .) and θ1 =

(W
(1)
1 ,W

(2)
2 , . . .).

2: v(0) ← x

3: v
(0)
1 ← 0

4: for l = 1 . . . L do

5: h(l) ←W(l)v(l−1)

6: h
(l)
1 ←W(l)v

(l−1)
1 +W

(l)
1 v(l−1)

7: v(l) ← φ(l)(h(l))

8: v
(l)
1 ← φ′(l)(h(l))� h

(l)
1

9: end for

10: v̂
(L)
2 ← ∂2

∂v2 E(v
(L), y)v

(L)
1

11: for l = L . . . 1 do

12: ĥ
(l)
2 ← v̂

(l)
2 � φ′(l)(h(l))

13: v̂
(l−1)
2 ← W(l) T ĥ

(l)
2

14: Ŵ
(l)
2 ← ĥ

(l)
2 v(l−1) T

15: end for

16: return θ̂2 ≡
(

Ŵ
(1)
2 , . . . ,Ŵ

(L)
2

)

3 Krylov Subspace Descent: overview

Now we describe our method, and how it relates to
Hessian Free (HF) optimization. The discussion in the
previous section (on the Hessian versus Gauss-Newton
matrix) is orthogonal to the distinction between KSD

and HF, because either method can use any Hessian
substitute, with the proviso that our method can use
the Hessian even when it is not positive definite.

In the rest of this section we will use H to refer to
either the Hessian or a substitute such as G or F.
In Martens (2010) and in the work we describe here,
these matrices are approximated using a subset of data
samples. In both HF and KSD, the whole computa-
tion is preconditioned using the diagonal of the Fisher
matrix F (since this is easy to compute); however, in
this overview we will gloss over this preconditioning.
In HF, on each iteration the CG algorithm is used to
approximately compute

d = −(H+ λI)−1g, (7)

where d is the step direction, and g is the gradient.
As described in Martens (2010), CG aims to minimize
the function 1

2x
T (H+λI)x−xTg which is a quadratic

approximation of our objective function. The approx-
imate solution dCG reached after K iterations of CG
will lie in the Krylov subspace of dimensionK spanned
by {g, (H+ λI)g, . . . , (H+ λI)K−1g}. This is easy to
see by looking at the CG algorithm.

In HF, the step size to take in the direction dCG is de-
termined by a backtracking line search. The value of λ
is kept updated by Levenburg-Marquardt style heuris-
tics. Other heuristics are used to control the stopping
of the CG iterations. In addition, the CG iterations
for optimizing d are not initialized from zero (which
would be the natural choice) but from the previous
value of d; this loses some convergence guarantees but
seems to improve performance, perhaps by adding a
kind of momentum to the updates.

In our method, we compute an orthogonal basis P for
the subspace spanned by {g,Hg, . . . ,HK−1g,dprev},
which is the Krylov subspace of dimension K gener-
ated by g and H, augmented with the previous search
direction. Note that the Krylov subspace of dimension
K generated by g andH+λI is the same as that gener-
ated by g and H, which is easy to verify. Our method
optimizes the objective function f over this subspace
using BFGS, approximating the objective function us-
ing a subset of samples. Our BFGS phase may be
viewed as a modification of the line search phase of
HF, but done in a higher dimension and using a subset
of the data. The BFGS phase uses a different subset of
data from that used to compute the Hessian; if we used
the same subset we would get a very biased estimate
of the optimal step to take within the subspace.

4 Krylov Subspace Descent in detail

In this section we describe the details of the KSD al-
gorithm, including the preconditioning.

Oriol Vinyals, Daniel Povey

For notation purposes: on iteration n of the overall
optimization we will write the training data set used
to obtain the gradient asAn (which is always the entire
dataset in our experiments); the set used to compute
the Hessian or Hessian substitute as Bn; and the set
used for BFGS optimization over the subspace, as Cn.
For clarity when dealing with multiple subset sizes, we
will typically normalize all quantities by the number of
samples: that is, objective function values, gradients,
Hessians and the like will always be divided by the
number of samples in the set over which they were
computed.

On each iteration we will compute a diagonal precon-
ditioning matrix D (we omit the subscript n). D is
expected to be a rough approximation to the Hessian.
In our experiments, following Martens (2010), we set
D to the diagonal of the Fisher matrix computed over
An. To precondition, we define a normalized param-
eter vector θ̃ = D1/2

θ, compute the Krylov subspace
in terms of θ̃, and convert back to the “canonical” co-
ordinates. The result is the subspace spanned by the
vectors

{

(D−1H)kD−1g, 0 ≤ k < K
}

(8)

We add into this subspace the previous search direc-
tion dprev, and we optimize over the resulting subspace
with BFGS. Including the previous search direction in
the subspace is inspired by one of the features of the
HF implementation of Martens (2010), and modestly
improves optimization performance. The algorithm to
compute an orthogonal basis for the subspace, and the
Hessian (or Hessian substitute) within it, is given as
Algorithm 2, which starts with the gradient direction
g and successively multiplies by D−1H, while apply-
ing Gram-Schmidt orthogonalization to the resulting
vectors to obtain an orthonormal basis.

The complete algorithm is given as Algorithm 3. The
most important parameter is K, the dimension of the
Krylov subspace (e.g. 20). The flooring constant ε is
(we believe) an unimportant parameter; we used 10−4.
The subset sizes may be important; we recommend
that An should be all of the training data, and Bn and
Cn should each be about 1/K of the training data,
and disjoint from each other but not from An. This
is the subset size that keeps the computation approx-
imately balanced between the gradient computation,
subspace construction and subspace optimization. Im-
plementations of the BFGS algorithm would typically
also have parameters: for instance, parameters of the
line-search algorithm and stopping criteria; however,
we expect that in practice these would not have too
much effect on performance because the algorithm is
likely to converge almost exactly (since the subspace
dimension and the number of iterations are about the
same).

Algorithm 2 Construct basis P = [p1, . . . ,pK+1] for
the subspace, and the Hessian (or substitute) H̄ in the
co-ordinates of the subspace.

1: p1 ← D−1g

2: p1 ←
1

||p1||2
p1

3: for k = 1 . . . K + 1 do

4: w ← Hpk // If Gauss-Newton matrix, computed

with Algorithm 1; if the Hessian, see Pearlmutter

(1994).

5: if k < K then

6: u← D−1w // u will be pm+1

7: else if k = K then

8: u ← dprev // Previous search direction; use

arbitrary nonzero vector if 1st iteration

9: end if

10: for j = 1 . . . k do

11: h̄k,j ← wTpj // Compute element of reduced-

dimension Hessian

12: u← u− (uTpj)pj // Orthogonalize u

13: end for

14: if k ≤ K then

15: pk+1 ←
1

||u||2
u // Normalize length and set

next direction.

16: end if

17: end for

18: // Now set upper triangle of H̄ to lower triangle.

Each iteration of Algorithm 3 computes a Krylov sub-
space of dimension K from the gradient and the Hes-
sian or Hessian substitute, and optimizes over this
subspace using BFGS with the objective function ap-
proximated using a data subset Cn. Lines 7 to 9 are
an additional preconditioning step to help the BFGS
to converge faster, in which we try to find new co-
ordinates in which H̄ is the unit matrix. Line 7 is
needed to handle cases where H̄ has zero or negative
eigenvalues. The flooring described in Line 7 may be
done as follows: do the Singular Value Decomposition
H̄ = UDVT , then let D̂ be a floored version of D,
with diagonal elements d̂i = max(di, εmaxi di); then

let Ĥ = UD̂UT (note: the use of U on both sides is
not a typo). This has the effect of flipping the sign
of negative eigenvalues, and then imposing a floor of ε
times the largest eigenvalue.

5 Experiments

To evaluate KSD, we performed several experiments
to compare it with SGD and with other second or-
der optimization methods2, namely L-BFGS and HF.

2Note: we may properly speak of HF and KGD as
second-order methods only when H is the actual Hessian
matrix

Krylov Subspace Descent for Deep Learning

Dataset Train smp. Test smp. Input Output Model Task
CURVES 20K 10K 784 (bin.) 784 (bin.) 400-200-100-50-25-5 AE
MNISTAE 60K 10K 784 (bin.) 784 (bin.) 1000-500-250-30 AE
MNISTCL 60K 10K 784 (bin.) 10 (class) 500-500-2000 Class
MNISTCL,PT

1 60K 10K 784 (bin.) 10 (class) 500-500-2000 Class
Aurora 1.2M 100K2 352 (real) 56 (class) 512-1024-1536 Class
Starcraft 900 100 5077 (mix) 8 (class) 10 Class

Table 1: Datasets and models used in our setup.

Algorithm 3 Krylov Subspace Descent

1: dprev ← e1 // or any arbitrary nonzero vector

2: for n = 1, 2 . . . do

3: // Sample three sets from training data, An, Bn and

Cn.

4: g ← 1
|An|

∑

i∈An

gi(θ) // Get average function

gradient over this batch.

5: Set D to diagonal of Fisher matrix on An,
floored to ε times its maximum.

6: Run Algorithm 2 to find P and H̄ on subset Bn
7: Let Ĥ be the result of flooring the eigenvalues

of H̄ to ε times the maximum.
8: Do the Cholesky decomposition Ĥ = CCT

9: Let P̄ = PC−T (do this in-place; C−T is upper
triangular)

10: a← 0 ∈ R
K+1

11: Find the value a∗ that minimizes the objective
function measured on Cn, using about K iter-
ations of BFGS, with objective function mea-
sured at θ + P̄a and gradient P̄Tg (where g is
the gradient w.r.t. the parameters, measured at
parameter-value θ + P̄a).

12: dprev ← P̄a∗

13: θ ← θ + dprev

14: end for

We report both training and cross validation errors,
and running time (we terminated the algorithms with
an early stopping rule using held-out validation data).
Our implementations of both KSD and HF are based
on Matlab using Jacket3 to perform the expensive ma-
trix operations on a Geforce GTX580 GPU with 1.5GB
of memory.

5.1 Datasets and models

Here we describe the datasets that we used to compare
KSD to other methods.

• CURVES: Artificial dataset consisting of curves
at 28×28 resolution. The dataset consists of 20K
training samples, and 10K testing samples. We

3www.accelereyes.com

considered an autoencoder network, as in Hinton
and Salakhutdinov (2006).

• MNIST: Single digit vision classification task.
The digits are 28×28 pixels, with a 60K training,
and 10K testing samples. We considered both an
autoencoder network, and classification (Hinton
and Salakhutdinov, 2006).

• Aurora: Spoken digits dataset, with different
levels of real noise (airport, train station, ...).
We used Perceptual Linear Prediction features
and performed classification of 56 English phones.
These frame level phone error rates are the ones
reported in Table 2. Also reported in the text
are Word Error Rates, which were produced by
using the phone posteriors in a Tandem system,
concatenated with standard MFCC to train a Hid-
den Markov Model with Gaussian Mixture Model
emissions. Further details on the setup can be
found in Vinyals and Ravuri (2011).

• Starcraft: The dataset consists of a real time
strategy video game sequences from 1000 games.
The goal is to predict the strategy the opponent
chose based on a fully observed game sequence
after five minutes, and features contain orderings
between buildings, presence/absence features, or
times that certain buildings were built.

The models (i.e. network architectures) for each
dataset are summarized in Table 1. We tried to ex-
plore a wide variety of models covering different sizes,
input and output characteristics, and tasks. Note that
the error reported for the autoencoder (AE) task is the
L2 norm squared between input and output, and for
the classification (Class) task is the classification error
(i.e. 100 - accuracy). The non linearities considered
were logistic functions for all the hidden layers except
for the “coding” layer (i.e. middle layer) in the au-
tencoders, which was linear, and the visible layer for

Oriol Vinyals, Daniel Povey

2.7 2.9 3.1 3.3 3.5 3.7

0.2

0.4

0.6

log
10

(time(s))

T
ra

in
 E

rr
or

HF, Hessian matrix
LBFGS
HF, GN matrix
KSD, Hessian matrix
KSD, GN matrix

Figure 1: Aurora convergence curves for various algo-
rithms.

2.4 2.6 2.8 3 3.2 3.4
0

4

8

12

16

18

log
10

(time(s))

L 2 T
ra

in
 E

rr
or

 LBFGS

 HF, Hessian matrix

 KSD, GN matix, K=80

 KSD, Hessian matrix, K=20

 HF, GN matrix

 KSD, GN matrix, K=20

Figure 2: CURVES convergence curves for various algo-
rithms.

HF KSD
Dataset Tr. err. CV err. Time Tr. err. CV err. Time
CURVES 0.13 0.19 1 0.17 0.25 0.2
MNISTAE 1.7 2.7 1 1.8 2.5 0.2
MNISTCL 0% 2.01% 1 0% 1.70% 0.6
MNISTCL,PT 0% 1.40% 1 0% 1.29% 0.6
Aurora 5.1% 8.7% 1 4.5% 8.1% 0.3
Starcraft 0% 11% 1 0% 5% 0.7

Table 2: Results comparing two second order methods: Hessian Free and Krylov Subspace Descent. Time
reported is relative to the running time of HF (lower than 1 means faster).

classification, which was softmax.

5.2 Results and discussion

Table 2 summarizes our results. We observe that KSD
converges faster than HF, and tends to lead to lower
generalization error. Our implementation for the two
methods is almost identical; the steps that dominate
the computation (computing objective functions, gra-
dients and Hessian or Gauss-Newton products) are
shared between both and are computed on a GPU.

For all the experiments we used the Gauss-Newton
matrix unless otherwise specified. The dimensional-
ity of the Krylov subspace was set to 20, the number
of BFGS iterations was set to 30 (although in many
cases the optimization on the projected gradients con-
verged before reaching 30), and an L2 regularization
term was added to the objective function. However,
motivated by the observation that on CURVES, HF
tends to use a large number of iterations, we experi-

1For MNISTCL,PT we initialize the weights using pre-
training RBMs as in Hinton and Salakhutdinov (2006). In
the other experiments, we did not find a significant differ-
ence between pretraining and random initialization as in
Martens (2010).

2We report both classification error rate on a 100K CV
set, and word error rate on a 5M testing set with different
levels of noise

mented with a larger subspace dimension of K = 80
and these are the numbers we report in Table 2.

For comparability in memory usage with KSD, we used
a moving window of size 10 for the L-BFGS methods.
We do not show SGD performance in Figures 1 and 2
as it was worse than L-BFGS.

When using HF or KSD, pre-training helped signifi-
cantly in the MNIST classification task, but not for
the other tasks (we do not show the results with pre-
training in the other cases; there was no substan-
tial difference in training or testing errors). However,
when using SGD or CG for optimization (results not
shown), pre-training helped on all tasks except Star-
craft (which is not a deep network). This is consistent
with the notion put forward in Martens (2010) that it
might be possible to do away with the need for pre-
training if we use powerful second-order optimization
methods. The one case in which pre-training helped
even when using HF or KSD, is MNIST; this dataset
had zero training errors, which in consistent with the
regularization interpretation of pre-training which is
put forward in Erhan et al. (2010). Our experiments
support the notion that when using advanced second-
order optimization methods and when overfitting is
not a major issue, pre-training is not necessary.

In Figures 1 and 2, we show the convergence of KSD

Krylov Subspace Descent for Deep Learning

and HF with both the Hessian and Gauss-Newton ma-
trices. HF eventually “gets stuck” when using the
Hessian; the algorithm was not designed to be used
for non-positive definite matrices, and the CG rou-
tine terminates when it detects a non-descent direc-
tion. Even before getting stuck, it is clear that it does
not work well with the actual Hessian. Our method
also works better with the Gauss-Newton matrix than
with the Hessian, although the difference is smaller.
Our method is always faster than HF and L-BFGS.

6 Conclusion and future work

In this paper, we proposed a new second order opti-
mization method. Our approach relies on efficiently
computing the matrix-vector product between the
Hessian (or a PSD approximation to it), and a vec-
tor. Unlike Hessian Free (HF) optimization, we do not
require the approximation of the Hessian to be PSD,
and our method requires fewer heuristics; however, it
requires more memory.

Our planned future work in this direction includes
investigating the circumstances under which pre-
training is necessary: that is, we would like to confirm
our statement that pre-training is not necessary when
using sufficiently advanced optimization methods, as
long as overfitting is not the main issue. Current work
shows that the presented method is also able to effi-
ciently train recursive neural networks, with no need
to use the structural damping of the Gauss-Newton
matrix proposed in Martens and Sutskever (2011).

Acknowledgments

We would like to thank James Martens and Ilya
Sutskever for useful discussions. We would also like
to thank the anonymous reviewers for helping improve
the paper. Oriol Vinyals would like to acknowledge the
Microsoft Research Fellowship.

References

Shun-Ichi Amari. Natural gradient works efficiently in
learning. Neural Computation, 10:251–276, 1998.

Yoshua Bengio and Xavier Glorot. Understanding the
difficulty of training deep feedforward neural net-
works. In AISTATS 2010, volume 9, pages 249–256,
May 2010.

Richard H. Byrd, Gillian M. Chiny, Will Neveitt, and
Jorge Nocedal. On the use of stochastic hessian
information in optimization methods for machine
learning. (submitted for publication), 2010.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy

Bengio. Why does unsupervised pre-training help
deep learning? The Journal of Machine Learning
Research, 11:625–660, 2010.

Geoffrey Hinton and Ruslan Salakhutdinov. Reducing
the Dimensionality of Data with Neural Networks.
Science, 313(5786):504 – 507, 2006.

Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik
Lahiri, Bobby Prochnow, and Andrew Y. Ng. On
optimization methods for deep learning. In ICML,
2011.

Nicolas Le Roux, Yoshua Bengio, and Pierre antoine
Manzagol. Topmoumoute online natural gradient
algorithm. In NIPS, 2007.

James Martens. Deep learning via Hessian-free opti-
mization. In ICML, 2010.

James Martens and Ilya Sutskever. Learning Recur-
rent Neural Networks with Hessian-Free Optimiza-
tion. In ICML, 2011.

José Luis Morales and Jorge Nocedal. Enriched Meth-
ods for Large-Scale Unconstrained Optimization.
Computational Optimization and Applications, 21:
143–154, 2000.

Jorge Nocedal and Stephen J. Wright. Numerical Op-
timization. Springer, New York, 2nd edition, 2006.

Barak A. Pearlmutter. Fast exact multiplication by
the Hessian. Neural Computation, 6:147–160, 1994.

Nicol N. Schraudolph. Fast curvature matrix-vector
products for second-order gradient descent. In Neu-
ral Computation, 2002.

Oriol Vinyals and Suman Ravuri. Comparing Mul-
tilayer Perceptron to Deep Belief Network Tandem
Features for Robust ASR. In ICASSP, 2011.

